Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 57

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of ITER CODAC compatible gyrotron local control system and its operation

Oshima, Katsumi; Oda, Yasuhisa; Takahashi, Koji; Terakado, Masayuki; Ikeda, Ryosuke; Hayashi, Kazuo*; Moriyama, Shinichi; Kajiwara, Ken; Sakamoto, Keishi

JAEA-Technology 2015-061, 65 Pages, 2016/03

JAEA-Technology-2015-061.pdf:24.28MB

In JAEA, an ITER relevant control system for ITER gyrotron was developed according to Plant Control Design Handbook. This control system was developed based on ITER CODAC Core System and implemented state machine control of gyrotron operation system, sequential timing control of gyrotron oscillation startup, and data acquisition. The operation of ITER 170 GHz gyrotron was demonstrated with ITER relevant power supply configuration. This system is utilized for gyrotron operation test for ITER procurement. This report describes the architecture of gyrotron operation system, its basic and detailed design, and recent operation results.

JAEA Reports

Disassembly of the NBI system on JT-60U for JT-60 SA

Akino, Noboru; Endo, Yasuei; Hanada, Masaya; Kawai, Mikito*; Kazawa, Minoru; Kikuchi, Katsumi*; Kojima, Atsushi; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; et al.

JAEA-Technology 2014-042, 73 Pages, 2015/02

JAEA-Technology-2014-042.pdf:15.1MB

According to the project plan of JT-60 Super Advanced that is implemented as an international project between Japan and Europe, the neutral beam (NB) injectors have been disassembled. The disassembly of the NB injectors started in November, 2009 and finished in January, 2012 without any serious problems as scheduled. This reports the disassembly activities of the NB injectors.

Journal Articles

Development of ITER CODAC compatible gyrotron local control system and its operation

Oda, Yasuhisa; Oshima, Katsumi; Nakamoto, Takashi*; Hashimoto, Yasunori*; Yamamoto, Tsuyoshi; Hayashi, Kazuo*; Ikeda, Yukiharu; Ikeda, Ryosuke; Kajiwara, Ken; Takahashi, Koji; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 90(7), p.365 - 373, 2014/07

no abstracts in English

JAEA Reports

Study of cable ageing mechanism for nuclear power plant (Contract research)

Seguchi, Tadao*; Tamura, Kiyotoshi*; Watashi, Katsumi; Suzuki, Masahide; Shimada, Akihiko; Sugimoto, Masaki; Idesaki, Akira; Yoshikawa, Masahito; Oshima, Takeshi; Kudo, Hisaaki*

JAEA-Research 2012-029, 158 Pages, 2012/12

JAEA-Research-2012-029.pdf:9.4MB

The degradation mechanisms of ethylene-propylene rubber (EPR), crosslinked polyethylene (XLPE), polyvinylchloride (PVC), and silicone rubber (SiR) as the cable insulation materials were investigated for the cable ageing research of the nuclear power plant. The materials as same insulations for the practical cable (practical formulation) and as the model formulation containing specific additive were selected. They were exposed to the accelerated radiation and thermal environments. The mechanical properties, the crosslinking and chain scission, and the distribution of antioxidant and of oxidative products were measured and analyzed.

Journal Articles

Progress in development and design of the neutral beam injector for JT-60SA

Hanada, Masaya; Kojima, Atsushi; Tanaka, Yutaka; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; et al.

Fusion Engineering and Design, 86(6-8), p.835 - 838, 2011/10

 Times Cited Count:13 Percentile:69.64(Nuclear Science & Technology)

Neutral beam (NB) injectors for JT-60 Super Advanced (JT-60SA) have been designed and developed. Twelve positive-ion-based and one negative-ion-based NB injectors are allocated to inject 30 MW D$$^{0}$$ beams in total for 100 s. Each of the positive-ion-based NB injector is designed to inject 1.7 MW for 100s at 85 keV. A part of the power supplies and magnetic shield utilized on JT-60U are upgraded and reused on JT-60SA. To realize the negative-ion-based NB injector for JT-60SA where the injection of 500 keV, 10 MW D$$^{0}$$ beams for 100s is required, R&Ds of the negative ion source have been carried out. High-energy negative ion beams of 490-500 keV have been successfully produced at a beam current of 1-2.8 A through 20% of the total ion extraction area, by improving voltage holding capability of the ion source. This is the first demonstration of a high-current negative ion acceleration of $$>$$1 A to 500 keV. The design of the power supplies and the beamline is also in progress. The procurement of the acceleration power supply starts in 2010.

Journal Articles

Development of the JT-60SA Neutral Beam Injectors

Hanada, Masaya; Kojima, Atsushi; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; Kazawa, Minoru; et al.

AIP Conference Proceedings 1390, p.536 - 544, 2011/09

 Times Cited Count:7 Percentile:84.66(Physics, Atomic, Molecular & Chemical)

no abstracts in English

Journal Articles

Achievement of 500 keV negative ion beam acceleration on JT-60U negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Nuclear Fusion, 51(8), p.083049_1 - 083049_8, 2011/08

 Times Cited Count:51 Percentile:88.4(Physics, Fluids & Plasmas)

Hydrogen negative ion beams of 490 keV, 3 A and 510 keV, 1 A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60SA and ITER.

Journal Articles

Demonstration of 500 keV beam acceleration on JT-60 negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Hydrogen negative ion beams of 490keV, 3A and 510 keV, 1A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of $$sim$$ 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60 SA and ITER.

Journal Articles

Development and design of the negative-ion-based NBI for JT-60 Super Advanced

Hanada, Masaya; Akino, Noboru; Endo, Yasuei; Inoue, Takashi; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; Komata, Masao; Kojima, Atsushi; Mogaki, Kazuhiko; et al.

Journal of Plasma and Fusion Research SERIES, Vol.9, p.208 - 213, 2010/08

A large negative ion source with an ion extraction area of 110 cm $$times$$ 45 cm has been developed to produce 500 keV, 22 A D$$^{-}$$ ion beams required for JT-60 Super Advanced. To realize the JT-60SA negative ion source, the JT-60 negative ion source has been modified and tested on the negative-ion-based neutral beam injector on JT-60U. A 500 keV H$$^{-}$$ ion beam has been produced at 3 A without a significant degradation of beam optics. This is the first demonstration of a high energy negative ion acceleration of more than one-ampere to 500 keV in the world. The beam current density of 90 A/m$$^{2}$$ is being increased to meet 130 A/m$$^{2}$$ of the design value for JT-60SA by tuning the operation parameters. A long pulse injection of 30 s has been achieved at a injection D$$^{0}$$ power of 3 MW. The injection energy, defined as the product of the injection time and power, reaches 80 MJ by neutralizing a 340 keV, 27 A D$$^{-}$$ ion beam produced with two negative ion sources.

Journal Articles

Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA

Tanaka, Yutaka; Hanada, Masaya; Kojima, Atsushi; Akino, Noboru; Shimizu, Tatsuo; Oshima, Katsumi; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; et al.

Review of Scientific Instruments, 81(2), p.02A719_1 - 02A719_3, 2010/02

 Times Cited Count:4 Percentile:22.9(Instruments & Instrumentation)

The JT-60U negative ion source is required to produce 44 A of 500 keV D$$^{-}$$ ion beams for the JT-60SA. So far, acceleration voltage of 450 kV was achieved without beam acceleration and 416 kV with beam acceleration. These are lower than the rated voltage for JT-60SA due to vacuum breakdowns. To examine the cause of vacuum breakdown, the complicated structure of the accelerator was modeled for the calculation of electric field inside the accelerator. At the corners of the grid support flanges, the electric fields are locally concentrated to be 5.2-5.5 kV/mm. This is higher than other parts of the accelerator where the averaged field is around 3 kV/mm. To reduce the concentrated electric field, the support structures were modified to extend the gap lengths between grids. By repeating the high-voltage application of 3 s pulses, the applied voltage was increased. After 15 hours of conditioning, the accelerator sustained its rated value of 500 kV without beam acceleration.

JAEA Reports

Modification of the drift ducts reionization loss estimation for JT-60U NBI

Kawai, Mikito; Akino, Noboru; Ikeda, Yoshitaka; Ebisawa, Noboru; Honda, Atsushi; Kazawa, Minoru; Kikuchi, Katsumi; Mogaki, Kazuhiko; Noto, Katsuya; Oshima, Katsumi; et al.

JAEA-Technology 2008-069, 32 Pages, 2008/10

JAEA-Technology-2008-069.pdf:6.75MB

The neutral beam injection system for JT-60U consists of positive-ion based type(P-NBI) and negative-ion based type(N-NBI). The reionization losses of neutral beams in the drift ducts of both P-NBI and N-NBI are estimated using the data of ambient pressure and gas flow rate into the beamlines. This system was not enough to obtain detail injection power for a long pulse operation. Modifications of the system to obtain reionization loss for a long pulse operation have been conducted. The new system has a capability to measure the pressures of drift duct during operation. The system can calculate the reionization loss automatically during the pulse from the measured pressure. More acurate injection power can be obtained by this new system.

Journal Articles

Recent R&D activities of negative-ion-based ion source for JT-60SA

Ikeda, Yoshitaka; Hanada, Masaya; Kamada, Masaki; Kobayashi, Kaoru; Umeda, Naotaka; Akino, Noboru; Ebisawa, Noboru; Inoue, Takashi; Honda, Atsushi; Kawai, Mikito; et al.

IEEE Transactions on Plasma Science, 36(4), p.1519 - 1529, 2008/08

 Times Cited Count:12 Percentile:41.25(Physics, Fluids & Plasmas)

The JT-60SA N-NBI system is required to inject 10 MW for 100 s at 500 keV. Three key issues should be solved for the JT-60SA N-NBI ion source. One is to improve the voltage holding capability. Recent R&D tests suggested that the accelerator with a large area of grids may need a high margin in the design of electric field and a long time for conditioning. The second issue is to reduce the grid power loading. It was found that some beamlets were strongly deflected due to beamlet-beamlet interaction and strike on the grounded grid. The grids are to be designed by taking account of beamlet-beamlet interaction in three-dimensional simulation. Third is to maintain the D- production for 100 s. A simple cooling structure is proposed for the active cooled plasma grid, where a key is the temperature gradient on the plasma grid for uniform D- production. The modified N-NBI ion source will start on JT-60SA in 2015.

JAEA Reports

Prototype development of P-NBI data acquisition system for the JT-60SA

Shinozaki, Shinichi; Honda, Atsushi; Oshima, Katsumi; Shimizu, Tatsuo; Numazawa, Susumu*; Ikeda, Yoshitaka

JAEA-Technology 2008-048, 23 Pages, 2008/07

JAEA-Technology-2008-048.pdf:8.1MB

The modification of the JT-60U to a fully superconducting coil tokamak, JT-60SA, has been programmed as the satellite devise for the ITER and as the national centralized tokamak. The present positive-ion-based NBI system, which has employed the expensive CAMAC and has been operated for 20 years, is required to extend its pulse duration from 30 s to 100 s for JT-60SA. Recently, the frequency of troubles on the data acquisition system has increased due to its age-induced deterioration. To realize the long pulse operation and to maintain the high reliability on JT-60SA, we set to develop a new acquisition system. As a first step, we have designed and constructed a prototype acquisition system, which is combined with instruments highly available on the market, to confirm the basic performance. The result indicates that the new system allows us to construct a highly flexible and user-friendly acquisition system at low cost without highly technical software developing.

Journal Articles

Design of a new P-NBI control system for 100-s injection in JT-60SA

Okano, Fuminori; Shinozaki, Shinichi; Honda, Atsushi; Oshima, Katsumi; Numazawa, Susumu*; Ikeda, Yoshitaka

Fusion Engineering and Design, 83(2-3), p.280 - 282, 2008/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Application of PLC to dynamic control system for liquid He cryogenic pumping facility on JT-60U NBI system

Honda, Atsushi; Okano, Fuminori; Oshima, Katsumi; Akino, Noboru; Kikuchi, Katsumi; Tanai, Yutaka; Takenouchi, Tadashi; Numazawa, Susumu*; Ikeda, Yoshitaka

Fusion Engineering and Design, 83(2-3), p.276 - 279, 2008/04

 Times Cited Count:11 Percentile:59.16(Nuclear Science & Technology)

The control system of the cryogenic facility in the JT-60 NBI system has been renewed by employing the PLC (Programmable Logic Controller) and SCADA (Supervisory Control And Data Acquisition) system. The original control system was constructed about 20 years ago by specifying the DCS (Distributed Control System) computer to deal with 400 feedback loops. Recently, troubles on this control system have increased due to its aged deterioration. To maintain a high reliability of the cryogenic facility, a new control system has been intended with PLC and SCADA system. By optimizing the function blocks and connecting them in the FBD language, the feedback loops in the new control system have been successfully replaced from DCS to PLC without software developer. At present, the new control system has worked well. This is the first application of the marketable PLC to the actual system with feedback loops of $$>$$ 400 produced by the user itself.

Journal Articles

Long pulse production of high current D$$^{-}$$ ion beams in the JT-60 negative ion source

Hanada, Masaya; Kamada, Masaki; Akino, Noboru; Ebisawa, Noboru; Honda, Atsushi; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; Komata, Masao; Mogaki, Kazuhiko; et al.

Review of Scientific Instruments, 79(2), p.02A519_1 - 02A519_4, 2008/02

 Times Cited Count:6 Percentile:32.32(Instruments & Instrumentation)

A long pulse production of high-current, high-energy D$$^{-}$$ ion beams was studied in the JT-60U negative ion source that was designed to produce 22 A, 500 keV D$$^{-}$$ ion beams. Prior to the long pulse production, the short pulse beams were produced to examine operational ranges for a stable voltage holding capability and an allowable grid power loading. From a correlation between the voltage holding capability and a light intensity of cathodoluminescence from the insulator made of Fiber Reinforced Plastic insulator, the voltage holding was found to be stable at $$<$$ 340 kV where the light was sufficiently suppressed. The grid power loading for the long pulse operation was also decreased to the allowable level of $$<$$ 1 MW without a significant reduction of the beam power by tuning the extraction voltage (Vext) and the arc power (Parc). These allow the production of 30 A D$$^{-}$$ ion beams at 340 keV from two ion sources at Vacc = 340 kV. The pulse length was extended step by step, and finally reached up to 21 s, where the beam pulse length was limited by the surface temperature of the beam scraper without water cooling. The D$$^{-}$$ ion beams were neutralized to via a gas cell, resulting in a long pulse injection of 3.2 MW D$$^{0}$$ beams for 21 s. This is the first long injection of $$>$$ 20 s in a power range of $$>$$ 3 MW.

Journal Articles

Technical design of NBI system for JT-60SA

Ikeda, Yoshitaka; Akino, Noboru; Ebisawa, Noboru; Hanada, Masaya; Inoue, Takashi; Honda, Atsushi; Kamada, Masaki; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; et al.

Fusion Engineering and Design, 82(5-14), p.791 - 797, 2007/10

 Times Cited Count:22 Percentile:80.64(Nuclear Science & Technology)

Modification of JT-60U to a superconducting device (so called JT-60SA) has been planned to contribute to ITER and DEMO. The NBI system is required to inject 34 MW for 100 s. The upgraded NBI system consists of twelve positive ion based NBI (P-NBI) units and one negative ion based NBI (N-NBI) unit. The injection power of the P-NBI units are 2 MW each at 85 keV, and the N-NBI unit will be 10 MW at 500 keV, respectively. On JT-60U, the long pulse operation of 30 s at 2 MW (85 keV) and 20 s at 3.2 MW (320 keV) have been achieved on P-NBI and N-NBI units, respectively. Since the temperature increase of the cooling water in both ion sources is saturated within 20 s, further pulse extension up to 100 s is expected to mainly modify the power supply systems in addition to modification of the N-NBI ion source for high acceleration voltage. The detailed technical design of the NBI system for JT-60SA is presented.

JAEA Reports

Development of protection system for power supply facilities in JT-60U P-NBI for long pulse operation

Oshima, Katsumi; Okano, Fuminori; Honda, Atsushi; Shinozaki, Shinichi; Usui, Katsutomi; Noto, Katsuya; Kawai, Mikito; Ikeda, Yoshitaka

JAEA-Technology 2007-044, 27 Pages, 2007/06

JAEA-Technology-2007-044.pdf:26.9MB

In the positive ion based NBI (P-NBI) system, we have developed a protection system to protect the power supply facilities from over load during long pulse operation. The protection system monitors the voltage (V) and current (I) in the power supply facilities, and calculates the parameters of V2t and I2t in real-time, where T is the pulse duration. It turns off the power supply facilities when V2t and I2t are beyond the critical values. After two development stages, we have completed the protection system using a package typed PLC (Programmable Logic Controller) which has a high expandability of multi-unit operation. Moreover, we have constructed a user-friendly system by using a SCADA (Supervisory Control and Data Acquisition) system.

JAEA Reports

Design study of a new P-NBI control system for 100-s injection in JT-60SA

Honda, Atsushi; Okano, Fuminori; Shinozaki, Shinichi; Oshima, Katsumi; Numazawa, Susumu*; Ikeda, Yoshitaka

JAEA-Technology 2007-026, 19 Pages, 2007/03

JAEA-Technology-2007-026.pdf:3.36MB

The modification of the JT-60U to a fully superconducting coil tokamak, JT-60SA (Super Advanced), has been programmed as the satellite devise for the ITER (International Thermonuclear Experimental Reactor) and as the national centralized tokamak. The present positive-ion-based NBI system (P-NBI), which has been operated for 20 years and will be the main heating system on JT-60SA, is required to manage the long pulse injection extended from 30 s to 100 s at the power of 24 MW with 12 units. To realize such a requirement, the original control system handling more than 4000 digital data is to be fully remodeled. Design study of the new control system has been conducted from viewpoint of market availability, system extensibility, cost-effectiveness and independent development in programming. It has been concluded that a distributed control system using PLC (Programmable Logic Controller) could be applied to the large-scale control system for 100-s operations with satisfaction of the evaluation viewpoints.

Journal Articles

Present status of the negative ion based NBI system for long pulse operation on JT-60U

Ikeda, Yoshitaka; Umeda, Naotaka; Akino, Noboru; Ebisawa, Noboru; Grisham, L. R.*; Hanada, Masaya; Honda, Atsushi; Inoue, Takashi; Kawai, Mikito; Kazawa, Minoru; et al.

Nuclear Fusion, 46(6), p.S211 - S219, 2006/06

 Times Cited Count:59 Percentile:87.2(Physics, Fluids & Plasmas)

Recently, the extension of the pulse duration up to 30 sec has been intended to study quasi-steady state plasma on JT-60U N-NBI system. The most serious issue is to reduce the heat load on the grids for long pulse operation. Two modifications have been proposed to reduce the heat load. One is to suppress the beam spread which may be caused by beamlet-beamlet interaction in the multi-aperture grid due to the space charge force. Thin plates were attached on the extraction grid to modify the local electric field. The plate thickness was optimized to steer the beamlet deflection. The other is to reduce the stripping loss, where the electron of the negative ion beam is stripped and accelerated in the ion source and then collides with the grids. The ion source was modified to reduce the pressure in the accelerator column to suppress the beam-ion stripping loss. Up to now, long pulse injection of 17 sec for 1.6 MW and 25 sec for $$sim$$1 MW has been obtained by one ion source with these modifications.

57 (Records 1-20 displayed on this page)