Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Stable structure of hydrogen atoms trapped in tungsten divacancy

Osawa, Kazuhito*; Toyama, Takeshi*; Hatano, Yuji*; Yamaguchi, Masatake; Watanabe, Hideo*

Journal of Nuclear Materials, 527, p.151825_1 - 151825_7, 2019/12

 Times Cited Count:7 Percentile:67.25(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Progress report of Japanese simulation research projects using the high-performance computer system Helios in the International Fusion Energy Research Centre

Ishizawa, Akihiro*; Idomura, Yasuhiro; Imadera, Kenji*; Kasuya, Naohiro*; Kanno, Ryutaro*; Satake, Shinsuke*; Tatsuno, Tomoya*; Nakata, Motoki*; Nunami, Masanori*; Maeyama, Shinya*; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 92(3), p.157 - 210, 2016/03

The high-performance computer system Helios which is located at The Computational Simulation Centre (CSC) in The International Fusion Energy Research Centre (IFERC) started its operation in January 2012 under the Broader Approach (BA) agreement between Japan and the EU. The Helios system has been used for magnetised fusion related simulation studies in the EU and Japan and has kept high average usage rate. As a result, the Helios system has contributed to many research products in a wide range of research areas from core plasma physics to reactor material and reactor engineering. This project review gives a short catalogue of domestic simulation research projects. First, we outline the IFERC-CSC project. After that, shown are objectives of the research projects, numerical schemes used in simulation codes, obtained results and necessary computations in future.

Journal Articles

Trapping of multiple hydrogen atoms in a tungsten monovacancy from first principles

Osawa, Kazuhito*; Goto, Junya*; Yamakami, Masahiro*; Yamaguchi, Masatake; Yagi, Masatoshi*

Physical Review B, 82(18), p.184117_1 - 184117_6, 2010/11

 Times Cited Count:111 Percentile:95.07(Materials Science, Multidisciplinary)

The configuration of multiple hydrogen atoms trapped in a tungsten monovacancy is investigated using first-principles calculations. Unlike previous computational studies, which have reported that hydrogen in BCC metal monovacancies occupies octahedral interstitial sites, it is found that the stable sites shift towards tetrahedral interstitial sites as the number of hydrogen atoms increases. As a result, a maximum of twelve hydrogen atoms can become trapped in a tungsten monovacancy.

3 (Records 1-3 displayed on this page)
  • 1