Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 29

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Large scale production of $$^{64}$$Cu and $$^{67}$$Cu via the $$^{64}$$Zn(n, p)$$^{64}$$Cu and $$^{68}$$Zn(n, np/d)$$^{67}$$Cu reactions using accelerator neutrons

Kawabata, Masako*; Motoishi, Shoji*; Ota, Akio*; Motomura, Arata*; Saeki, Hideya*; Tsukada, Kazuaki; Hashimoto, Shintaro; Iwamoto, Nobuyuki; Nagai, Yasuki*; Hashimoto, Kazuyuki*

Journal of Radioanalytical and Nuclear Chemistry, 330(3), p.913 - 922, 2021/12

 Times Cited Count:4 Percentile:73.26(Chemistry, Analytical)

Both $$^{64}$$Cu and $$^{67}$$Cu are promising radionuclides in nuclear medicine. Production yields of these radionuclides were quantified by irradiating 55.4 g of natural zinc with accelerator neutrons. Clinically suitable $$^{64}$$Cu and $$^{67}$$Cu yields were estimated by experimental based numerical simulations using 100 g of enriched $$^{64}$$Zn and $$^{68}$$Zn, respectively, and elevated neutron fluxes from 40 MeV, 2 mA deuterons. A combined thermal- and resin-separation method was developed to isolate $$^{64}$$Cu and $$^{67}$$Cu from zinc, resulting in 73% separation efficiency and 97% zinc recovery. Such methods can provide large scale production of $$^{64}$$Cu and $$^{67}$$Cu for clinical applications.

Journal Articles

Report on special sessions in the 49th Annual Meeting of the Japan Health Physics Society

Sakoda, Akihiro; Kataoka, Noriaki*; Ishikawa, Junya*; Ota, Akio*; Suzuki, Tatsuhiko*; Nishiyama, Yuichi*; Hirouchi, Jun; Hokama, Tomonori

Hoken Butsuri, 51(3), p.181 - 186, 2016/09

The 49th annual meeting of the Japan Health Physics Society was held in Hirosaki, Aomori between June 30th and July 1st, 2016. This article gives the report on all of twelve special sessions in this meeting.

Journal Articles

Technical estimation for mass production of highly-concentrated $$^{rm 99m}$$Tc solution from $$^{99}$$Mo to be obtained by ($$n,gamma$$) reaction; A Preliminary study using inactive Re instead of $$^{rm 99m}$$Tc

Tanase, Masakazu*; Fujisaki, Saburo*; Ota, Akio*; Shiina, Takayuki*; Yamabayashi, Hisamichi*; Takeuchi, Nobuhiro*; Tsuchiya, Kunihiko; Kimura, Akihiro; Suzuki, Yoshitaka; Ishida, Takuya; et al.

Radioisotopes, 65(5), p.237 - 245, 2016/05

no abstracts in English

JAEA Reports

Establishment of experimental system for $$^{99}$$Mo/$$^{99m}$$Tc production by neutron activation method

Ishida, Takuya; Shiina, Takayuki*; Ota, Akio*; Kimura, Akihiro; Nishikata, Kaori; Shibata, Akira; Tanase, Masakazu*; Kobayashi, Masaaki*; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.

JAEA-Technology 2015-030, 42 Pages, 2015/11

JAEA-Technology-2015-030.pdf:4.82MB

The research and development (R&D) on the production of $$^{99}$$Mo/$$^{99m}$$Tc by neutron activation method ((n, $$gamma$$) method) using JMTR has been carried out in the Neutron Irradiation and Testing Reactor Center. The specific radioactivity of $$^{99}$$Mo by (n, $$gamma$$) method is extremely low compared with that by fission method ((n,f) method), and as a result, the radioactive concentration of the obtained $$^{99m}$$Tc solution is also lowered. To solve the problem, we propose the solvent extraction with methyl ethyl ketone (MEK) for recovery of $$^{99m}$$Tc from $$^{99}$$Mo produced by (n, $$gamma$$) method. We have developed the $$^{99}$$Mo/$$^{99m}$$Tc separation/extraction/concentration devices and have carried out the performance tests for recovery of $$^{99m}$$Tc from $$^{99}$$Mo produced by (n, $$gamma$$) method. In this paper, in order to establish an experimental system for $$^{99}$$Mo/$$^{99m}$$Tc production, the R&D results of the system are summarized on the improvement of the devices for high-recovery rate of $$^{99m}$$Tc, on the dissolution of the pellets, which is the high-density molybdenum trioxide (MoO$$_{3}$$) pellets irradiated in Kyoto University Research Reactor (KUR), on the production of $$^{99m}$$Tc, and on the inspection of the recovered $$^{99m}$$Tc solutions.

Journal Articles

SPECT imaging of mice with $$^{99m}$$Tc-radiopharmaceuticals obtained from $$^{99}$$Mo produced by $$^{100}$$Mo(n,2n)$$^{99}$$Mo and fission of $$^{235}$$U

Hashimoto, Kazuyuki; Nagai, Yasuki; Kawabata, Masako; Sato, Nozomi*; Hatsukawa, Yuichi; Saeki, Hideya; Motoishi, Shoji*; Ota, Masayuki; Konno, Chikara; Ochiai, Kentaro; et al.

Journal of the Physical Society of Japan, 84(4), p.043202_1 - 043202_4, 2015/04

 Times Cited Count:7 Percentile:53.16(Physics, Multidisciplinary)

Journal Articles

New phenomenon observed in thermal release of $$^{99m}$$Tc from molten $$^{100}$$MoO$$_{3}$$

Kawabata, Masako; Nagai, Yasuki; Hashimoto, Kazuyuki; Saeki, Hideya; Motoishi, Shoji*; Sato, Nozomi*; Ota, Akio*; Shiina, Takayuki*; Kawauchi, Yukimasa*

Journal of the Physical Society of Japan, 84(2), p.023201_1 - 023201_4, 2015/02

 Times Cited Count:6 Percentile:45.45(Physics, Multidisciplinary)

$$^{99m}$$Tc for medical use can be separated by thermochromatography from a molten $$^{99}$$MoO$$_{3}$$ sample. Effect of moist oxygen gas on the $$^{99m}$$Tc release from molten $$^{99}$$MoO$$_{3}$$ samples was investigated using a $$^{99}$$Mo/$$^{99m}$$Tc generator. $$^{99}$$Mo was produced with $$^{100}$$Mo(n,2n)$$^{99}$$Mo. A new phenomenon has been observed: release rate, separation- and recovery-efficiencies of $$^{99m}$$Tc were higher in the moist oxygen gas than those in the dry oxygen gas. The present result is a significant progress towards the stable production of a high quality $$^{99m}$$Tc from a molten MoO$$_{3}$$ sample with high separation efficiency. The result would also give us a new insight into the interaction between the moist oxygen gas and the molten MoO$$_{3}$$.

JAEA Reports

Fabrication technology development and characterization of irradiation targets for $$^{99}$$Mo/$$^{rm 99m}$$Tc production by (n,$$gamma$$) method

Nishikata, Kaori; Kimura, Akihiro; Ishida, Takuya; Shiina, Takayuki*; Ota, Akio*; Tanase, Masakazu*; Tsuchiya, Kunihiko

JAEA-Technology 2014-034, 34 Pages, 2014/10

JAEA-Technology-2014-034.pdf:3.26MB

As a part of utilization expansion after the Japan Material Testing Reactor (JMTR) re-start, research and development (R&D) on the production of medical radioisotope $$^{99}$$Mo/$$^{99m}$$Tc by (n, $$gamma$$) method using JMTR has been carried out in the Neutron Irradiation and Testing Reactor Center of the Japan Atomic Energy Agency. $$^{99}$$Mo is usually produced by fission method. On the other hand, $$^{99}$$Mo/$$^{99m}$$Tc production by the (n, $$gamma$$) method has advantages for radioactive waste, cost reduction and non-proliferation. However, the specific radioactivity per unit volume by the (n, $$gamma$$) method is low compared with the fission method, and that is the weak point of the (n, $$gamma$$) method. This report summarizes the investigation of raw materials, the fabrication tests of high-density MoO$$_{3}$$ pellets by the plasma sintering method for increasing of $$^{98}$$Mo contents and the characterization of sintered high-density MoO$$_{3}$$ pellets.

Journal Articles

Development of $$^{99m}$$Tc production from (n,$$gamma$$)$$^{99}$$Mo based on solvent extraction

Kimura, Akihiro; Awaludin, R.*; Shiina, Takayuki*; Tanase, Masakazu*; Kawauchi, Yukimasa*; Gunawan, A. H.*; Lubis, H.*; Sriyono*; Ota, Akio*; Genka, Tsuguo; et al.

Proceedings of 3rd Asian Symposium on Material Testing Reactors (ASMTR 2013), p.109 - 115, 2013/11

JP, 2011-173260   Patent publication (In Japanese)

$$^{99m}$$Tc is generated by decay of $$^{99}$$Mo. Production of $$^{99}$$Mo is carried out by (n,f) method with high enriched uranium targets, and the production are currently producing to meet about 95% of global supply. Recently, it is difficult to carry out a stable supply for some problems such as aging of reactors etc. Furthermore, the production has difficulties in nuclear proliferation resistance etc. Thus, (n,$$gamma$$) method has lately attracted considerable attention. The (n,$$gamma$$) method has several advantages, but the extremely low specific activity makes its uses less convenient than (n,f) method. We proposed a method based on the solvent extraction, followed by adsorption of $$^{99m}$$Tc with alumina column. In this paper, a practical production of $$^{99m}$$Tc was tried by the method with 1Ci of $$^{99}$$Mo produced in MPR-30. The recovery yields were approximately 70%. Impurity of $$^{99}$$Mo was less than 4.0$$times$$10$$^{-5}$$% and the radiochemical purity was over 99.2%.

Journal Articles

Preparation of polymer gel dosimeters based on less toxic monomers and gellan gum

Hiroki, Akihiro; Sato, Yuichi*; Nagasawa, Naotsugu; Ota, Akio*; Seito, Hajime; Yamabayashi, Hisamichi*; Yamamoto, Takayoshi*; Taguchi, Mitsumasa; Tamada, Masao; Kojima, Takuji

Physics in Medicine & Biology, 58(20), p.7131 - 7141, 2013/10

 Times Cited Count:17 Percentile:54.76(Engineering, Biomedical)

Journal Articles

$$^{99}$$Mo-$$^{rm 99m}$$Tc production process by (n,$$gamma$$) reaction with irradiated high-density MoO$$_{3}$$ pellets

Tsuchiya, Kunihiko; Nishikata, Kaori; Tanase, Masakazu*; Shiina, Takayuki*; Ota, Akio*; Kobayashi, Masaaki*; Yamamoto, Asaki*; Morikawa, Yasumasa*; Takeuchi, Nobuhiro*; Kaminaga, Masanori; et al.

Proceedings of 6th International Symposium on Material Testing Reactors (ISMTR-6) (Internet), 9 Pages, 2013/10

no abstracts in English

Journal Articles

Development of $$^{99m}$$Tc production from (n,$$gamma$$)$$^{99}$$Mo based on solvent extraction and column chromatography

Kimura, Akihiro; Awaludin, R.*; Shiina, Takayuki*; Tanase, Masakazu*; Kawauchi, Yukimasa*; Gunawan, A. H.*; Lubis, H.*; Sriyono*; Ota, Akio*; Genka, Tsuguo; et al.

Proceedings of 6th International Symposium on Material Testing Reactors (ISMTR-6) (Internet), 7 Pages, 2013/10

JP, 2011-173260   Patent publication (In Japanese)

This research is development of $$^{99m}$$Tc production. $$^{99m}$$Tc is generated by decay of $$^{99}$$Mo. The supply of $$^{99}$$Mo in Japan depends entirely on the import from foreign countries. Thus, it is needed to supply $$^{99}$$Mo stably by the domestic manufacturing. A practical production of $$^{99m}$$Tc was tried by the method with 1 Ci of $$^{99}$$Mo produced in MPR-30. The results showed that the recovery yields were approximately 70%. The concentration of the product obtained was estimated to be corresponding to about 30 GBq (800 mCi)/ml when 150g of MoO$$_{3}$$ was irradiated for 5 days in MPR-30. Impurity of $$^{99}$$Mo was less than 4.4$$times$$10$$^{-5}$$%, which was lower than that of Japanese tentative regulation criteria. The radiochemical purity was higher than 99.8% that cleared the tentative regulation (95%) of Japan.

Journal Articles

Generation of radioisotopes with accelerator neutrons by deuterons

Nagai, Yasuki; Hashimoto, Kazuyuki; Hatsukawa, Yuichi; Saeki, Hideya; Motoishi, Shoji; Sonoda, Nozomi; Kawabata, Masako; Harada, Hideo; Kin, Tadahiro*; Tsukada, Kazuaki; et al.

Journal of the Physical Society of Japan, 82(6), p.064201_1 - 064201_7, 2013/06

 Times Cited Count:41 Percentile:85.16(Physics, Multidisciplinary)

Journal Articles

Fabrication and characterization of high-density MoO$$_{3}$$ pellets

Nishikata, Kaori; Kimura, Akihiro; Shiina, Takayuki*; Ota, Akio*; Tanase, Masakazu*; Tsuchiya, Kunihiko

Proceedings of 2012 Powder Metallurgy World Congress & Exhibition (PM 2012) (CD-ROM), 8 Pages, 2013/02

The renewed Japan Materials Testing Reactor (JMTR) will be started from 2012, and it is expected to contribute to many nuclear fields. Especially, in case of Japan, the supplying of $$^{99}$$Mo depends on imports from foreign countries. Japan Atomic Energy Agency (JAEA) has a plan to produce $$^{99}$$Mo, which is the parent nuclide of radiopharmaceutical $$^{rm 99m}$$Tc, and JAEA has performed the R&D for $$^{99}$$Mo production by (n,$$gamma$$) method in JMTR. Generally, molybdenum oxide (MoO$$_{3}$$) is the most popular chemical form as irradiation target for the $$^{99}$$Mo production. However, the $$^{99}$$Mo production capacity is low because of low (n,$$gamma$$) cross section and isotope composition of $$^{98}$$Mo in Mo. Thus, it is necessary to fabricate the MoO$$_{3}$$ pellets with high density for the increase of the $$^{99}$$Mo production amount. In this study, MoO$$_{3}$$ pellets fabricated by a plasma activated sintering were developed and characterization of MoO$$_{3}$$ pellets was carried out.

Journal Articles

Development of $$^{rm 99m}$$Tc production from (n, $$gamma$$) $$^{99}$$Mo

Tanase, Masakazu*; Shiina, Takayuki*; Kimura, Akihiro; Nishikata, Kaori; Fujisaki, Saburo*; Ota, Akio*; Kobayashi, Masaaki*; Yamamoto, Asaki*; Kawauchi, Yukimasa*; Tsuchiya, Kunihiko; et al.

Proceedings of 5th International Symposium on Material Testing Reactors (ISMTR-5) (Internet), 9 Pages, 2012/10

$$^{rm 99m}$$Tc is used as a radiopharmaceutical and manufactured from the parent nuclide of $$^{99}$$Mo. Extraction method of $$^{rm 99m}$$Tc from (n, $$gamma$$) $$^{99}$$Mo have been developed, as a part of the industrial use expansion after JMTR will re-start. In this research, the method proposed would be applicable to a practical production of $$^{rm 99m}$$Tc obtained from (n, $$gamma$$) $$^{99}$$Mo in large quantities. The method proposed would be applicable to a practical production of $$^{rm 99m}$$Tc obtained from (n, $$gamma$$) $$^{99}$$Mo in large quantities.

Journal Articles

Successful labeling of $$^{rm 99m}$$Tc-MDP using $$^{rm 99m}$$Tc separated from $$^{99}$$Mo produced by $$^{100}$$Mo($textit{n}$,2$textit{n}$)$$^{99}$$Mo

Nagai, Yasuki; Hatsukawa, Yuichi; Kin, Tadahiro; Hashimoto, Kazuyuki; Motoishi, Shoji; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke; Sato, Yuichi*; Kawauchi, Yukimasa*; et al.

Journal of the Physical Society of Japan, 80(8), p.083201_1 - 083201_4, 2011/08

 Times Cited Count:14 Percentile:65.42(Physics, Multidisciplinary)

We have for the first time succeeded to separate $$^{rm 99m}$$Tc from a Mo oxide sample irradiated by accelerator neutrons, and to formulate $$^{rm 99m}$$Tc-methylene diphosphonate ($$^{rm 99m}$$Tc-MDP). $$^{99}$$Mo, the mother nuclide of $$^{rm 99m}$$Tc, was produced by the $$^{100}$$Mo($textit{n}$,2$textit{n}$)$$^{99}$$Mo reaction using about 14 MeV neutrons provided at the Fusion Neutronics Source of Japan Atomic Energy Agency. The $$^{rm 99m}$$Tc was separated from $$^{99}$$Mo by the sublimation method, and its radionuclide purity was confirmed to be higher than 99.99%. The labeling efficiency of $$^{rm 99m}$$Tc-MDP was shown to be higher than 99%. These values exceed the United States Pharmacopeia requirements for a fission product, $$^{99}$$Mo. Consequently, a $$^{rm 99m}$$Tc radiopharmaceutical preparation formed by using the mentioned $$^{99}$$Mo can be a promising substitute for the fission product $$^{99}$$Mo. A longstanding problem to ensure a reliable and constant supply of $$^{99}$$Mo in Japan can be partially mitigated.

Journal Articles

$$^{99}$$Mo production plan from $$^{98}$$Mo by (n,$$gamma$$) reaction in JMTR

Izumo, Hironobu; Kimura, Akihiro; Hori, Naohiko; Tsuchiya, Kunihiko; Ishihara, Masahiro; Tanase, Masakazu*; Fujisaki, Saburo*; Ota, Akio*

Proceedings of 1st Asian Symposium on Material Testing Reactors (ASMTR 2011), p.77 - 82, 2011/02

no abstracts in English

Oral presentation

Dose response characteristics of polymer gel using different monomers

Sato, Yuichi*; Hiroki, Akihiro; Ota, Akio*; Nagasawa, Naotsugu; Seito, Hajime; Iwanade, Akio; Yamabayashi, Hisamichi*; Yamamoto, Takayoshi*; Tamada, Masao; Kojima, Takuji

no journal, , 

no abstracts in English

Oral presentation

Development of extraction and concentration system of $$^{99m}$$Tc from $$^{99}$$Mo produced by (n,$$gamma$$) method

Tanase, Masakazu*; Shiina, Takayuki*; Ota, Akio*; Fujisaki, Saburo*; Kawauchi, Yukimasa*; Kimura, Akihiro; Nishikata, Kaori; Yonekawa, Minoru; Ishida, Takuya; Kato, Yoshiaki; et al.

no journal, , 

Preliminary studies for obtaining $$^{99m}$$Tc from, (n,$$gamma$$)$$^{99}$$Mo produced in JMTR has been carried out, as a part of the industrial use expansion after JMTR will re-start. In order to obtain high specific-volume of $$^{99m}$$Tc, a method was proposed for extracting $$^{99m}$$Tc with MEK, followed by purification and concentration with acidic and basic alumina. In this study, preliminary tests, aiming construction of production system, were carried out using Re instead of $$^{99m}$$Tc because Re and Tc are homologous elements. The average recovery yield of Re was very high to be 98%. Based on the result, an apparatus for $$^{99m}$$Tc production was assembled.

Oral presentation

Development of $$^{99}$$Mo-$$^{99m}$$Tc domestic production with high-density MoO$$_{3}$$ pellets by (n,$$gamma$$) reaction

Tsuchiya, Kunihiko; Tanase, Masakazu*; Shiina, Takayuki*; Ota, Akio*; Kobayashi, Masaaki*; Morikawa, Yasumasa*; Yamamoto, Asaki*; Kaminaga, Masanori; Kawamura, Hiroshi

no journal, , 

no abstracts in English

Oral presentation

Preliminary experiments for $$^{99}$$Mo/$$^{99m}$$Tc production using irradiated MoO$$_{3}$$ pellets

Nishikata, Kaori; Kimura, Akihiro; Shiina, Takayuki*; Yamamoto, Asaki*; Ishida, Takuya; Ota, Akio*; Tanase, Masakazu*; Takeuchi, Nobuhiro*; Morikawa, Yasumasa*; Kobayashi, Masaaki*; et al.

no journal, , 

JP, 2011-173260   Patent publication (In Japanese)

no abstracts in English

29 (Records 1-20 displayed on this page)