Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of hydrogenation conditions on the microstructure and mechanical properties of zirconium hydride

Muta, Hiroaki*; Nishikane, Ryoji*; Ando, Yusuke*; Matsunaga, Junji*; Sakamoto, Kan*; Harjo, S.; Kawasaki, Takuro; Oishi, Yuji*; Kurosaki, Ken*; Yamanaka, Shinsuke*

Journal of Nuclear Materials, 500, p.145 - 152, 2018/03

 Times Cited Count:13 Percentile:76.73(Materials Science, Multidisciplinary)

Journal Articles

Fracture mechanics analysis including the butt joint geometry for the superconducting conductor conduit of the national centralized tokamak

Takahashi, Hiroyuki*; Kudo, Yusuke; Tsuchiya, Katsuhiko; Kizu, Kaname; Ando, Toshinari*; Matsukawa, Makoto; Tamai, Hiroshi; Miura, Yukitoshi

Fusion Engineering and Design, 81(8-14), p.1005 - 1011, 2006/02

 Times Cited Count:2 Percentile:17.14(Nuclear Science & Technology)

This paper presents dependence of the stress intensity factor, around the defect in the butt joint welding of a superconducting conductor conduit, on a geometrical factor estimated by fracture mechanics analysis. The stress intensity factor can be estimated by the Newman-Raju equation about CICC section, but the effect of the difference between the geometry assumed in the equation and CICC has not been clarified yet. Therefore, the three-dimensional finite element method (3D-FEM) is performed to estimate the geometrical factor. As a result, the Newman-Raju equation is considered to be available for the assessment of the fracture toughness of the conduit of rectangular shape because the maximum stress intensity factor by 3-D FEM is only 3% larger than that by the Newman-Raju equation in the maximum postulated defect.

Journal Articles

Advanced fusion technologies developed for JT-60 superconducting Tokamak

Sakasai, Akira; Ishida, Shinichi; Matsukawa, Makoto; Akino, Noboru; Ando, Toshinari*; Arai, Takashi; Ezato, Koichiro; Hamada, Kazuya; Ichige, Hisashi; Isono, Takaaki; et al.

Nuclear Fusion, 44(2), p.329 - 334, 2004/02

no abstracts in English

Journal Articles

Advanced fusion technologies developed for JT-60 superconducting Tokamak

Sakasai, Akira; Ishida, Shinichi; Matsukawa, Makoto; Akino, Noboru; Ando, Toshinari*; Arai, Takashi; Ezato, Koichiro; Hamada, Kazuya; Ichige, Hisashi; Isono, Takaaki; et al.

Nuclear Fusion, 44(2), p.329 - 334, 2004/02

 Times Cited Count:7 Percentile:22.88(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Progress in physics and technology developments for the modification of JT-60

Tamai, Hiroshi; Matsukawa, Makoto; Kurita, Genichi; Hayashi, Nobuhiko; Urata, Kazuhiro*; Miura, Yushi; Kizu, Kaname; Tsuchiya, Katsuhiko; Morioka, Atsuhiko; Kudo, Yusuke; et al.

Plasma Science and Technology, 6(1), p.2141 - 2150, 2004/02

 Times Cited Count:2 Percentile:6.49(Physics, Fluids & Plasmas)

The dominant issue for the the modification program of JT-60 (JT-60SC) is to demonstrate the steady state reactor relevant plasma operation. Physics design on plasma parameters, operation scenarios, and the plasma control method are investigated for the achievement of high-$$beta$$. Engineering design and the R&D on the superconducting magnet coils, radiation shield, and vacuum vessel are performed. Recent progress in such physics and technology developments is presented.

5 (Records 1-5 displayed on this page)
  • 1