Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Present status of the JAEA-AMS-TONO (2022FY)

Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Kimura, Kenji; Shimada, Akiomi; et al.

Dai-35-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.17 - 19, 2024/03

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.

Journal Articles

Present status of the JAEA-AMS-TONO (2021)

Matsubara, Akihiro*; Fujita, Natsuko; Miyake, Masayasu; Ishii, Masahiro*; Watanabe, Takahiro; Kokubu, Yoko; Nishio, Tomohiro*; Ogawa, Yumi; Jinno, Satoshi; Kimura, Kenji; et al.

JAEA-Conf 2022-002, p.55 - 62, 2023/03

We report the present status of the JAEA-AMS-TONO. Particularly, the destructions of varistors used in the beamline equipment will be presented. The cause of the destruction as well as implementation of the safety measures are mentioned.

Journal Articles

Present status of the JAEA-AMS-TONO (2022FY)

Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Yamamoto, Yusuke; Kimura, Kenji; et al.

Dai-23-Kai AMS Shimpojiumu Hokokushu, p.1 - 4, 2022/12

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.

JAEA Reports

Evaluation of irradiation behavior on oxide dispersion strengthened (ODS) steel claddings irradiated in Joyo/CMIR-6

Yano, Yasuhide; Otsuka, Satoshi; Yamashita, Shinichiro; Ogawa, Ryuichiro; Sekine, Manabu; Endo, Toshiaki; Yamagata, Ichiro; Sekio, Yoshihiro; Tanno, Takashi; Uwaba, Tomoyuki; et al.

JAEA-Research 2013-030, 57 Pages, 2013/11

JAEA-Research-2013-030.pdf:48.2MB

It is necessary to develop the fast reactor core materials, which can achieve high-burnup operation improving safety and economical performance. Ferritic steels are expected to be good candidate core materials to achieve this objective because of their excellent void swelling resistance. Therefore, oxide dispersion strengthened (ODS) ferritic steel and 11Cr-ferritic/martensitic steel (PNC-FMS) have been respectively developed for cladding and wrapper tube materials in Japan Atomic Energy Agency. In this study, the effects of fast neutron irradiation on mechanical properties and microstructure of 9Cr-and 12Cr-ODS steel claddings for fast reactor were investigated. Specimens were irradiated in the experimental fast reactor Joyo using the CMIR-6 at temperatures between 420 and 835$$^{circ}$$C to fast neutron doses ranging from 16 to 33 dpa. The post-irradiation ring tensile tests were carried out at irradiation temperatures.

Journal Articles

Mechanical properties of friction stir welded 11Cr-ferritic/martensitic steel

Yano, Yasuhide; Sato, Yutaka*; Sekio, Yoshihiro; Otsuka, Satoshi; Kaito, Takeji; Ogawa, Ryuichiro; Kokawa, Hiroyuki*

Journal of Nuclear Materials, 442(1-3), p.S524 - S528, 2013/09

 Times Cited Count:14 Percentile:72.01(Materials Science, Multidisciplinary)

Friction stir welding was applied to the wrapper tube materials, 11Cr-ferritic/martensitic steel, intended for fast reactors and defect-free welds were successfully produced. Then, the mechanical and microstructural properties of the friction stir welded steel were investigated. The hardness values of the stir zone were about 550 Hv, and they had hardly any dependence on the rotational speed, although they were much higher than that of the base material. However, tensile strengths and elongations of the stir zones were better at 298 K, compared to those of the base material. These excellent tensile properties were attributable to the fine grain formation during friction stir welding. A part of this study is the result of "Friction stir welding of the wrapper tube materials for Na fast reactors" carried out under the Strategic Promotion Program for Basic Nuclear Research by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Journal Articles

Investigation of the cause of peculiar irradiation behavior of 9Cr-ODS steel in BOR-60 irradiation tests

Otsuka, Satoshi; Kaito, Takeji; Yano, Yasuhide; Yamashita, Shinichiro; Ogawa, Ryuichiro; Uwaba, Tomoyuki; Koyama, Shinichi; Tanaka, Kenya

Journal of Nuclear Science and Technology, 50(5), p.470 - 480, 2013/05

 Times Cited Count:5 Percentile:38.34(Nuclear Science & Technology)

Four experimental fuel assemblies (EFAs) containing 9Cr-ODS steel cladding fuel pins were previously irradiated in the BOR-60. One of the EFAs achieved the best data, a peak burn-up of 11.9at% and a neutron dose of 51 dpa, without any microstructure instability or any fuel pin rupture. On the other hand, in another EFA (peak burn-up, 10.5at%; peak neutron dose, 44 dpa), peculiar irradiation behaviors such as microstructure instability and fuel pin rupture occurred. The combined effects of matrix Cr heterogeneity (presence of metallic Cr inclusions) and high-temperature irradiation were concluded to be the main cause of the peculiar microstructure change of 9Cr-ODS steel cladding tubes in the BOR-60 irradiation tests. They contributed to the fuel pin rupture.

Journal Articles

Irradiation performance of oxide dispersion strengthened (ODS) ferritic steel claddings for fast reactor fuels

Kaito, Takeji; Otsuka, Satoshi; Yano, Yasuhide; Tanno, Takashi; Yamashita, Shinichiro; Ogawa, Ryuichiro; Tanaka, Kenya

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Safe Technologies and Sustainable Scenarios (FR-13) (USB Flash Drive), 11 Pages, 2013/03

The oxide dispersion strengthened (ODS) ferritic steel claddings developed by Japan Atomic Energy Agency were irradiated in Joyo and BOR-60 in order to confirm their irradiation performance and thus judge their applicability to high burnup and high temperature fast reactor fuels. In Joyo, material irradiation tests up to 33 dpa were carried out at in the temperature range of 693 - 1108 K. The irradiation data were obtained concerning mainly mechanical properties and of microstructure stability. In BOR-60, fuel pin irradiation tests were conducted up to burnup of 11.9 at% and neutron dose of 51 dpa. The irradiation data were obtained concerning fuel-cladding chemical interaction, dimensional stability under irradiation and so on. These results showed the superior irradiation performance of the ODS ferritic steel claddings and their application possibility as fast reactor fuels. This paper describes the evaluation of the obtained irradiation data of ODS ferritic steel claddings.

Journal Articles

Effects of neutron irradiation on tensile properties of oxide dispersion strengthened (ODS) steel claddings

Yano, Yasuhide; Ogawa, Ryuichiro; Yamashita, Shinichiro; Otsuka, Satoshi; Kaito, Takeji; Akasaka, Naoaki; Inoue, Masaki; Yoshitake, Tsunemitsu; Tanaka, Kenya

Journal of Nuclear Materials, 419(1-3), p.305 - 309, 2011/12

 Times Cited Count:20 Percentile:81.43(Materials Science, Multidisciplinary)

The effects of fast neutron irradiation on ring tensile properties of oxide dispersion strengthened (ODS) steel claddings for fast reactor were investigated. Specimens were irradiated in the experimental fast reactor Joyo using the material irradiation rig at temperatures between 693 and 1108 K to fast neutron doses ranging from 16 to 33 dpa. The post-irradiation ring tensile tests were carried out at irradiation temperatures. The experimental results showed that there was no significant change in tensile strengths after neutron irradiation below 923 K, but the tensile strengths at neutron irradiation above 1023 K up to 33 dpa were decreased by about 20%. On the other hand, uniform elongation after irradiation was more than 2% at all irradiation conditions. The ring tensile properties of these ODS claddings remained excellent within these irradiation conditions compared with conventional 11Cr ferritic/martensitic steel (PNC-FMS) claddings.

Journal Articles

Oxide fuel fabrication technology development of the FaCT project, 5; Current status on 9Cr-ODS steel cladding development for high burn-up fast reactor fuel

Otsuka, Satoshi; Kaito, Takeji; Yano, Yasuhide; Yamashita, Shinichiro; Ogawa, Ryuichiro; Uwaba, Tomoyuki; Koyama, Shinichi; Tanaka, Kenya

Proceedings of International Conference on Toward and Over the Fukushima Daiichi Accident (GLOBAL 2011) (CD-ROM), 6 Pages, 2011/12

This paper describes evaluation results of in-reactor integrity of 9Cr and 12Cr-ODS steel cladding tubes and the plan for reliability improvement in homogeneous tube production. A fuel assembly in the BOR-60 irradiation test including 9Cr and 12Cr-ODS fuel pins has achieved the highest burn-up, i.e. peak burn-up of 11.9at% and peak neutron dose of 51dpa, without any fuel pin rupture and microstructure instability. In another fuel assembly containing 9Cr and 12Cr-ODS steel fuel pins whose peak burn-up was 10.5at%, one 9Cr-ODS steel fuel pin failed near the upper end of the fuel column. A peculiar microstructure change occurred in the vicinity of the ruptured area. The primary cause of this fuel pin rupture and microstructure change was shown to be the presence of metallic Cr inclusions in the 9Cr-ODS steel tube, which had passed an ultrasonic inspection test for defects. In the next stage from 2011 to 2013, the fabrication technology of full pre-alloy 9Cr-ODS steel cladding tube will be developed.

Oral presentation

Application attempt for Cs adsorbent of the Au nanoparticle fabricated by solution plasma method

Tsukada, Chie; Yoshida, Hikaru; Ogawa, Satoshi*; Yoshigoe, Akitaka; Yagi, Shinya*; Yaita, Tsuyoshi

no journal, , 

We focus on the Au nanoparticle, which is fabricated by solution plasma method, as the adsorbent with high density and high efficiency of Cs$$^{+}$$ in solution. To remove the Cs from the solution, we attempt two methods, which are the Cs adsorption on the Au nanoparticle surface and the interaction between the Cs and the L-cysteine on Au nanoparticle. Judging from the results of SR-XPS for the sample at the latter method, we suggest the interaction between the Cs and the COOH group of L-cysteine on Au nanoparticle.

Oral presentation

XPS analysis for Cs adsorbed on L-cysteine/Au nanoparticle

Tsukada, Chie*; Yoshida, Hikaru; Ogawa, Satoshi*; Yoshigoe, Akitaka; Yagi, Shinya*; Yaita, Tsuyoshi

no journal, , 

The decontamination of radioactive Cs from the soil and the water has been required in Fukushima. Gold nanoparticles (AuNPs) are attractive candidate for Cs adsorbent. AuNPs fabricated by solution plasma method is not covered by dispersant and is almost clean. It is known that L-cysteine rapidly adsorbs and exists with high density on the AuNPs surface. The electrostatic attractive force may be useful to induce interactions between -COO- of L-cysteine and Cs$$^{+}$$ ion in aqueous solution. This study reveals the adsorption reaction between the Cs and the Cys/AuNP. Cys/AuNP has a peak and CsCl/Cys/AuNP has no peak in Na 1s spectra. Cys/AuNP has no peak and CsCl/Cys/AuNP has a peak for Cs 3$$d_{5/2}$$ spectra. From these results, Na$$^{+}$$ on Cys/AuNP is replaced by Cs$$^{+}$$ after reaction in CsCl aqueous solution. Cys/AuNP and CsCl/Cys/AuNP have a O 1s peak, where the peak position of CsCl/Cys/AuNP is higher than that ofCys/AuNP. This indicates the further polarization of -COO- by replacing Na$$^{+}$$ by Cs$$^{+}$$.

Oral presentation

Synchrotron light analyses for gold nanoparticles fabricated by CsCl aqueous solution

Tsukada, Chie*; Yoshida, Hikaru; Ogawa, Satoshi*; Yoshigoe, Akitaka; Yagi, Shinya*; Yaita, Tsuyoshi

no journal, , 

To recovery from the Fukushima Daiichi Nuclear Power Station accident, the removal of radioactive Cs from the soil and cooling water is important. An absorbent and a removal procedure of Cs are required to have properties of effective separation ability, recyclable and energy saving. Here, we focus on the gold nanoparticles (AuNPs) fabricated by solution plasma method. The purpose of this study is to reveal the surface chemical states of the AuNPs fabricated by solution plasma method in CsCl aqueous solution. From the synchrotron light based analysis, it was found that the Cs-Cl-Au bondings form by the repeat of below two steps. (1) Cs and Cl atoms adsorb on AuNPs surface (Cs-Au and Cl-Au bondings). (2) Au atoms bonds around the AuNPs surface.

Oral presentation

Research and development for accelerator mass spectrometer at JAEA-AMS-TONO; 2022FY

Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Jinno, Satoshi; Watanabe, Takahiro; Nishio, Tomohiro*; Ogawa, Yumi; Kimura, Kenji; Shimada, Akiomi; et al.

no journal, , 

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.

13 (Records 1-13 displayed on this page)
  • 1