Refine your search:     
Report No.
 - 
Search Results: Records 1-15 displayed on this page of 15
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Decommissioning program and future plan for Research Hot Laboratory, 3

Shiina, Hidenori; Ono, Katsuto; Nishi, Masahiro; Uno, Kiryu; Kanazawa, Hiroyuki; Oi, Ryuichi; Nihei, Yasuo

Dekomisshoningu Giho, (61), p.29 - 38, 2020/03

The Research Hot Laboratory (RHL) in Japan Atomic Energy Agency (JAEA) was constructed in 1961, as the first one in Japan, to perform the examinations of irradiated fuels and materials. RHL consists of 10 heavy concrete cells and 38 lead cells. RHL contributed to research and development program in or out of JAEA for the investigation of irradiation behavior for fuels and nuclear materials. However, RHL is the one of target as the rationalization program for decrepit facilities in former Tokai institute. Therefore the decommissioning works of RHL started on April 2003. The dismantling of 12 lead cells has been progressing since 2010. The dismantling procedure of lead cells was performed in the following order. The peripheral equipment in lead cells were removed and contamination survey of the inner surface of the cells. Then, the backside shield doors were extracted. The lifting frame for the isolation tent was set on the cells. After that, the ceiling plates, isolation walls and lead blocks were removed. The strippable paint was used to remove permeable contamination on the inner surface of structural steel of the cells. The dismantling work will be continued to mention the efficiency of decommissioning works and reduction of radioactive waste with ensuring safety.

Journal Articles

Decommissioning program of Research Hot Laboratory in JAEA; Technical review of dismantling works for the lead cells, 2

Shiina, Hidenori; Ono, Katsuto; Nishi, Masahiro; Nihei, Yasuo

Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 7 Pages, 2017/00

The Research Hot Laboratory (RHL) in Japan Atomic Energy Agency (JAEA) is the first facility in Japan for the post irradiation examination (PIE) on reactor fuels and structural materials, which had contributed to advancement of the fuels and materials since 1961. The building of RHL consists of two stories above ground and a basement, in which 10 heavy concrete and 38 lead cells were installed. In RHL, all operations for PIE had been completed in 2003. Then the decommissioning program has been implemented in order to promote the rationalization of research facilities in JAEA. As the first step of the program, PIE apparatuses and irradiated samples were removed from the cells, which have been managed as radioactive wastes. The dismantling of lead cells was initiated in 2005. At present 26 lead cells are successfully dismantled. This paper shows technical review of dismantling operations for the lead cells.

Journal Articles

Tensile mechanical properties of a stainless steel irradiated up to 19 dpa in the Swiss spallation neutron source

Saito, Shigeru; Kikuchi, Kenji*; Hamaguchi, Dai; Usami, Koji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki; Kawai, Masayoshi*; Dai, Y.*

Journal of Nuclear Materials, 431(1-3), p.44 - 51, 2012/12

 Times Cited Count:2 Percentile:17.8(Materials Science, Multidisciplinary)

To evaluate the lifetime of the beam window of an accelerator-driven transmutation system (ADS), post irradiation examination (PIE) of the STIP (SINQ target irradiation program, SINQ; Swiss spallation neutron source) specimens was carried out. The specimens tested in this study were made from the austenitic steel JPCA (Japan primary candidate alloy). The specimens were irradiated at SINQ Target 4 (STIP-II) with high-energy protons and spallation neutrons. The irradiation conditions were as follows: the proton energy was 580 MeV, irradiation temperatures ranged from 100 to 430$$^{circ}$$C, and displacement damage levels ranged from 7.1 to 19.5 dpa. Tensile tests were performed in air at room temperature (R.T.), 250$$^{circ}$$C and 350$$^{circ}$$C. Fracture surface observation after the tests was done by SEM (Scanning electron microscope). Results of the tensile tests performed at R.T. showed the extra hardening of JPCA at higher dose compared to the fission neutron irradiated data. At the higher temperatures, 250$$^{circ}$$C and 350$$^{circ}$$C, the extra hardening was not observed. Degradation of ductility bottomed around 10 dpa, and specimens kept their ductility until 19.5 dpa. All specimens fractured in ductile manner. The result from a microstructure observation on a specimen irradiated to 19.3 dpa at 420$$^{circ}$$C indicates that some agglomeration of bubbles on grain boundaries was observed in the specimen irradiated to 19.3 dpa at 420$$^{circ}$$C. However the tensile specimen irradiated up to 18.4 dpa at 425$$^{circ}$$C still exhibited little loss of ductility. Since He/dpa was very high on SINQ target irradiations, the formation of highly dense small bubbles in the matrix consequently avoided the accumulation of He on grain boundaries, which might have resulted in avoiding grain boundary embrittlement.

Journal Articles

Decommissioning program and future plan for Research Hot Laboratory, 2

Koya, Toshio; Nozawa, Yukio; Hanada, Yasushi; Ono, Katsuto; Kanazawa, Hiroyuki; Nihei, Yasuo; Owada, Isao

Dekomisshoningu Giho, (42), p.41 - 48, 2010/09

The Research Hot Laboratory (RHL) in Japan Atomic Energy Agency (JAEA) had been contributed to R&D program for fuels and nuclear materials in or out of JAEA. However, the decommissioning work of RHL has been started on April 2003 as the rationalization program for decrepit facilities in former Tokai institute. This work will be progressing, dismantling the lead cells and decontamination of concrete caves then release in the regulation of controlled area. The partial area of RHL will be used for the central storage of un- irradiated fuel and for temporary storage of radioactive device generated by J-PARC. The 18 lead cells had been dismantled and the preparing work for remained 20 lead cells has been finished including the removal of the applause from the cells, survey of the contamination revel in the lead cells and prediction of radio active waste. The future plan of decommissioning work has been prepared to incarnate the basic vision and dismantling procedure.

Journal Articles

Mechanical properties of austenitic stainless steels irradiated at SINQ target 4

Saito, Shigeru; Hamaguchi, Dai; Usami, Koji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki; Kikuchi, Kenji*; Kawai, Masayoshi*; Yong, D.*

Proceedings of 1st International Workshop on Technology and Components of Accelerator-driven Systems (TCADS-1) (Internet), 9 Pages, 2010/03

The research and development for an accelerator-driven system (ADS) to transmute minor actinide (MA) have been progressed. The target beam window of ADS submerged in the reactor will be subjected to high-energy proton and spallation neutron irradiation. To evaluate mechanical properties of irradiated materials, post irradiation examination (PIE) of the STIP (SINQ target irradiation program) specimens was carried out at JAEA. In the present study, PIE on austenitic steels JPCA and Alloy800H irradiated at SINQ target 4 (STIP-II) was conducted. Austenitic steels are preferable as the material for the target beam window of ADS from the view point of DBTT shift, which should be taken into consideration for ferritic / martensitic steels. The irradiation conditions were as follows: proton energy was 580 MeV, irradiation temperatures were ranged from 100 to 450$$^{circ}$$C, and displacement damage levels were ranged from 6.5 to 19.5 dpa. Tensile tests were performed in air at R.T. to 350$$^{circ}$$C. Results of the tensile tests performed at R.T. indicate that irradiation hardening occurred with increasing displacement damage level up to 10 dpa. At higher doses, irradiation hardening seemed to tend to saturate. Degradation of ductility was bottomed around 10 dpa and specimens kept its ductility until 19.5 dpa. All the specimens fractured in ductile manner.

JAEA Reports

Post-irradiation examinations of inert matrix nitride fuel irradiated in JMTR (01F-51A capsule)

Iwai, Takashi; Nakajima, Kunihisa; Kikuchi, Hironobu; Honda, Junichi; Hatakeyama, Yuichi; Ono, Katsuto; Matsui, Hiroki; Arai, Yasuo

JAEA-Research 2007-026, 75 Pages, 2007/03

JAEA-Research-2007-026.pdf:13.6MB

A plutonium nitiride fuel pin containing inert matrix such as ZrN and TiN was encapsuled in 01F-51A and irradiated in JMTR. Minor actinides are surrogated by plutonium. Average linear powers and burnups were 408W/cm, 30000MWd/t(Zr+Pu)(132000MWd/t-Pu) for (Zr,Pu)N and 355W/cm, 38000MWd/t(Ti+Pu)(153000MWd/t-Pu) for (TiN,PuN). The irradiated capsule was transported to Reactor Fuel Examination Facility and subjected to non-destructive and destructive post irradiation examinations. Any failure was not observed in theirradiated fuel pin. Very low fission gas release rate of about 1.6% was measured. The inner surface of cladding tube did not show any signs of chemical interaction with fuel pellets.

Journal Articles

Post-irradiation examination on particle dispersed rock-like oxide fuel

Shirasu, Noriko; Kuramoto, Kenichi*; Yamashita, Toshiyuki; Ichise, Kenichi; Ono, Katsuto; Nihei, Yasuo

Journal of Nuclear Materials, 352(1-3), p.365 - 371, 2006/06

 Times Cited Count:4 Percentile:30.68(Materials Science, Multidisciplinary)

To evaluate irradiation behavior of the ROX fuel, irradiation experiment was carried out using 20% enriched U instead of Pu. Three fuels were prepared; a single phase fuel of YSZ containing UO$$_{2}$$ (U-YSZ), two particle-dispersed fuels of U-YSZ particle in spinel or corundum matrix. The U-YSZ particles were prepared by crashing presintered U-YSZ pellets and by sieving them. These fuels were irradiated in Japan Research Reactor No.3 for 13 cycles, about 300 days. Though many cracks were observed in the pellets by X-ray photographs, significant appearance changes were not observed for all fuel pins. Distribution of typical FPs was analyzed by the $$gamma$$ scanning over the fuel pin. Non-volatile nuclide remained in the fuel pellet. On the other hand, a part of Cs moved to the gaps between the pellets and to the insulators. $$^{134}$$Cs and $$^{137}$$Cs showed different distributions at the plenum. Fuel pellets were taken out from fuel pins without bonding. Spinel decomposition and subsequent restructuring were not observed probably due to low irradiation temperature.

Journal Articles

Interaction between RF and edge plasma during ICRF heating in JT-60

Fujii, Tsuneyuki; Saigusa, Mikio; Kimura, Haruyuki; *; Tobita, Kenji; Nemoto, Masahiro; Kusama, Yoshinori; Seki, Masami; Moriyama, Shinichi; Nishitani, Takeo; et al.

Fusion Engineering and Design, 12, p.139 - 148, 1990/00

 Times Cited Count:25 Percentile:89.09(Nuclear Science & Technology)

no abstracts in English

Oral presentation

Post-irradiation destructive examinations of inert matrix nitride fuels, 1; Metallography

Iwai, Takashi; Matsui, Hiroki; Ichise, Kenichi; Ono, Katsuto; Arai, Yasuo

no journal, , 

The results of post-irradiation destructive examinations of (Zr,Pu)N and (TiN,PuN) simulated of inert matrix nitiride fuel which is a candidate material for transmutation of minor actinides, are reported. From the observation of cross section of the fuel pins, a gap was existent between fuel pellet and cladding. As there is no large cruck in the fuel pellet, the structure of the pellet was very stable. Because reation zones and signs of the corrosion were not shown, the fuel clad chemical interaction did not occurred. Grain size of the fuel pellet did not change under irradiation as the temperature of the pellet was low.

Oral presentation

Behavior of high burnup fuels under Reactivity-Initiated Accident (RIA) and Loss-of-Coolant Accident (LOCA) conditions, 7; Oxidation behavior of fuel cladding in a LOCA

Chuto, Toshinori; Nagase, Fumihisa; Ono, Katsuto; Fuketa, Toyoshi

no journal, , 

In order to investigate effect of burnup on high temperature oxidation of the advanced cladding alloys, isothermal oxidation tests were performed with specimens prepared from high burnup fuel cladding which were irradiated up to 79 MWd/kg as well as non-irradiated cladding. Oxidation kinetics was evaluated from weight gain and oxide layer growth. Oxide layer thickness on the cladding outside diameter (OD) is smaller in the irradiated cladding. It is considered that the oxidation at the cladding OD was suppressed by the pre-formed corrosion layer. Results of the weight gain measurement also suggest lower oxidation rates in the irradiated cladding. Difference in the alloy composition hardly affected the oxidation rates.

Oral presentation

Status of PIEs in the Department of Hot Laboratories and Facilities

Matsui, Hiroki; Honda, Junichi; Ono, Katsuto; Kitagawa, Isamu; Owada, Isao; Kikuchi, Hiroyuki

no journal, , 

Oral presentation

Tensile properties of JPCA specimens irradiated in a spallation environment

Saito, Shigeru; Kikuchi, Kenji; Hamaguchi, Dai; Usami, Koji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki; Kawai, Masayoshi*; Yong, D.*

no journal, , 

no abstracts in English

Oral presentation

Mechanical properties of JPCA and Alloy800H irradiated up to 19 dpa at SINQ target4

Saito, Shigeru; Hamaguchi, Dai; Kikuchi, Kenji*; Usami, Koji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki; Kawai, Masayoshi*; Yong, D.*

no journal, , 

In several institutes, the research and development for an accelerator-driven transmutation system (ADS) to transmute minor actinide (MA) have been progressed. To evaluate lifetime of the beam window, post irradiation examination (PIE) of the STIP (SINQ target irradiation program, SINQ; Swiss spallation neutron source) specimens was carried out at JAEA. The specimens were austenitic steels JPCA and Alloy800H. The irradiation conditions of the specimens irradiated at SINQ target 4 (STIP-II) were as follows: proton energy was 580 MeV, irradiation temperatures were ranged from 100 to 450$$^{circ}$$C, and dpa were ranged from 6.5 to 19.5 dpa. All PIE works has been carried out at WASTEF and RFEF in Tokai Research and Development Center, JAEA. Tensile tests were performed in air at R.T., 250$$^{circ}$$C and 350$$^{circ}$$C. Fracture surface observation after the tests was done by SEM. Results of the tensile tests performed at R.T. indicate that irradiation hardening occurred with increasing displacement damage level up to 10 dpa. At higher doses, irradiation hardening seemed to tend to saturate. Degradation of ductility was bottomed around 10 dpa and specimens kept its ductility until 19.5 dpa. The most of specimens fractured in ductile manner, however, the specimens irradiated at the higher dose ($$>$$ 19 dpa) and higher temperature ($$>$$ 400$$^{circ}$$C) showed partially intergranular morphology.

Oral presentation

Decommissioning program of research hot laboratory in JAEA; Technical review of dismantling works for the lead cells

Shiina, Hidenori; Nozawa, Yukio; Ono, Katsuto; Nishi, Masahiro; Koya, Toshio; Ishikawa, Akiyoshi

no journal, , 

Oral presentation

Mechanical properties of beam window materials for ADS irradiated in a spallation environment

Saito, Shigeru; Kikuchi, Kenji*; Hamaguchi, Dai; Endo, Shinya; Usami, Koji; Sakuraba, Naotoshi; Miyai, Hiromitsu; Ono, Katsuto; Matsui, Hiroki; Kawai, Masayoshi*; et al.

no journal, , 

no abstracts in English

15 (Records 1-15 displayed on this page)
  • 1