Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 376

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Failure probability evaluation for steam generator tubes with wall-thinning

Yamaguchi, Yoshihito; Mano, Akihiro; Li, Y.

Transactions of 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT 27) (Internet), 10 Pages, 2024/03

The steam generator (SG) is an important component of a pressurized water reactor. In addition, local wall-thinning has been reported in SG tubes. The burst differential pressure, considering both the internal and external pressures from the primary and secondary coolant systems, should be predicted for the failure probability evaluation or structural integrity assessment of SG tubes. In this study, based on the results of burst tests performed in Japan and the United States, we improved the existing burst pressure estimation method for SG tubes with wall-thinning. In addition, as an example of the utilization of the improved burst pressure estimation method, the conditional failure probabilities for SG tubes with local wall-thinning, which is necessary for probabilistic risk assessment and risk-informed decision making, are calculated considering the dimensions of the wall-thinning.

Journal Articles

An X-ray and neutron scattering study of aqueous MgCl$$_2$$ solution in the gigapascal pressure range

Yamaguchi, Toshio*; Fukuyama, Nami*; Yoshida, Koji*; Katayama, Yoshinori*; Machida, Shinichi*; Hattori, Takanori

Liquids, 3(3), p.288 - 302, 2023/09

We report the structure of an aqueous 2 mol/kg MgCl$$_2$$ solution at pressures from 0.1 MPa to 4 GPa and temperatures from 300 to 500 K revealed by X-ray and neutron scattering measurements. The scattering data are analyzed by empirical potential structure refinement (EPSR) modeling to derive the pair distribution functions, coordination number distributions, angle distributions, and spatial density functions as a function of pressure and temperature. Mg$$^{2+}$$ forms rigid solvation shells extended to the third shell; the first solvation shell of six-fold octahedral coordination with about six water molecules at 0 GPa transforms into about five water molecules and one Cl$$^-$$ due to the formation of the contact ion pairs in the GPa pressure range. The Cl$$^-$$ solvation shows a substantial pressure dependence; the coordination number of a water oxygen atom around Cl$$^-$$ increases from 8 at 0.1 MPa/300 K to 10 at 4 GPa/500 K. The solvent water transforms the tetrahedral network structure at 0.1 MPa/300 K to a densely packed structure in the GPa pressure range; the number of water oxygen atoms around a central water molecule gradually increases from 4.6 at 0.1 MPa/298 K to 8.4 at 4 GPa/500 K.

Journal Articles

Hydrogen embrittlement and its prevention in 7XXX aluminum alloys with high Zn concentrations

Shimizu, Kazuyuki*; Toda, Hiroyuki*; Fujihara, Hiro*; Yamaguchi, Masatake; Uesugi, Masayuki*; Takeuchi, Akihisa*; Nishijima, Masahiko*; Kamada, Yasuhiro*

Corrosion, 79(8), p.818 - 830, 2023/08

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

7xxx aluminum alloys are representative high-strength aluminum alloys; however, mechanical property degradation due to hydrogen hinders further strengthening. We propose the dispersion of Mn-based second-phase particles as a novel technique for preventing 7xxx aluminum alloy hydrogen embrittlement. In this study, the deformation and fracture behaviors of high hydrogen 7xxx alloys containing 0.0% Mn and 0.6% Mn are observed in situ using synchrotron radiation X-ray tomography. The obtained macroscopic hydrogen embrittlement is quantitatively analyzed based on hydrogen partitioning in alloys. Adding 0.6% Mn, generating second-phase particles with high hydrogen trapping abilities, significantly suppresses hydrogen-induced quasicleavage fracture.

Journal Articles

High-sensitive XANES analysis at Ce L$$_{2}$$-edge for Ce in bauxites using transition-edge sensors; Implications for Ti-rich geological samples

Li, W.*; Yamada, Shinya*; Hashimoto, Tadashi; Okumura, Takuma*; Hayakawa, Ryota*; Nitta, Kiyofumi*; Sekizawa, Oki*; Suga, Hiroki*; Uruga, Tomoya*; Ichinohe, Yuto*; et al.

Analytica Chimica Acta, 1240, p.340755_1 - 340755_9, 2023/02

 Times Cited Count:2 Percentile:31.9(Chemistry, Analytical)

no abstracts in English

Journal Articles

Neutron scattering on an aqueous sodium chloride solution in the gigapascal pressure range

Yamaguchi, Toshio*; Yoshida, Koji*; Machida, Shinichi*; Hattori, Takanori

Journal of Molecular Liquids, 365, p.120181_1 - 120181_10, 2022/11

 Times Cited Count:1 Percentile:16.81(Chemistry, Physical)

Neutron scattering measurements were performed on an aqueous 3 mol/kg NaCl solution in D$$_2$$O at temperature and pressure conditions of 0.1 MPa/298K, 1 GPa/298K, 1 GPa/523K, and 4 GPa/523K. The empirical potential structure refinement method was applied to the obtained data to extract the pair correlation function, coordination number distribution, angular distribution (orientation correlation), and spatial density function (3-D structure). From those results, pressure and temperature dependence of solvation and association of ions and solvent-water structure were discussed.

Journal Articles

The Translational, rotational, and phonon dynamics of water in ZrO$$_{2}$$/water nanofluid

Yoshida, Koji*; Sanada, Yusuke*; Yamaguchi, Toshio*; Matsuura, Masato*; Tamatsukuri, Hiromu; Uchiyama, Hiroshi*

Journal of Molecular Liquids, 366, p.120218_1 - 120218_9, 2022/11

 Times Cited Count:1 Percentile:16.81(Chemistry, Physical)

Journal Articles

Failure estimation methods for steam generator tubes with wall-thinning or crack

Yamaguchi, Yoshihito; Mano, Akihiro; Li, Y.

Proceedings of ASME 2022 Pressure Vessels and Piping Conference (PVP 2022) (Internet), 10 Pages, 2022/07

The steam generator (SG) tube is one of the important components in pressurized water reactors. Flaws such as wall-thinning or stress corrosion cracking have been reported in SG tubes. The burst pressure where both the internal and external pressures from the primary and secondary coolant systems are considered must be predicted to assess the structural integrity of SG tubes. Burst tests were performed by various organizations. On the basis of the test results, failure estimation methods were proposed. In this study, previous burst test data and existing failure estimation methods for SG tubes with wall-thinning or crack were investigated. As a result, the coefficient of the existing estimation method for SG tube with uniform wall-thinning was updated. In addition, failure estimation methods that are suitable for SG tubes with crack or local wall-thinning were proposed by considering the effects of the flaw shape and size on the burst pressure. The applicability of the failure estimation methods was confirmed by comparing the predicted results with the burst test data in actual SG tubes.

Journal Articles

Effect of uniaxial tensile strain on binding energy of hydrogen atoms to vacancy-carbon-hydrogen complexes in $$alpha$$-iron

Hirayama, Shintaro*; Sato, Koichi*; Kato, Daiji*; Iwakiri, Hirotomo*; Yamaguchi, Masatake; Watanabe, Yoshiyuki*; Nozawa, Takashi*

Nuclear Materials and Energy (Internet), 31, p.101179_1 - 101179_9, 2022/06

 Times Cited Count:3 Percentile:68.71(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Structure of an aqueous RbCl solution in the gigapascal pressure range by neutron diffraction combined with empirical potential structure refinement modeling

Zhang, W. Q.*; Yamaguchi, Toshio*; Fang, C. H.*; Yoshida, Koji*; Zhou, Y. Q.*; Zhu, F. Y.*; Machida, Shinichi*; Hattori, Takanori; Li, W.*

Journal of Molecular Liquids, 348, p.118080_1 - 118080_11, 2022/02

 Times Cited Count:2 Percentile:34.79(Chemistry, Physical)

The ion hydration and association and hydrogen-bonded water structure in an aqueous 3 mol/kg RbCl solution were investigated at 298 K/0.1 MPa, 298 K/1 GPa, 523 K/1 GPa, and 523 K/4 GPa by neutron diffraction combined with EPSR methods. The second hydration layer of Rb$$^+$$ and Cl$$^-$$ becomes evident under elevated pressure and temperature conditions. The average oxygen coordination number of Rb$$^+$$ (Cl$$^-$$) in the first hydration layer increases from 6.3 (5.9) ambient pressure to 8.9 (9.1) at 4 GPa, while decreasing coordination distance from 0.290 nm (0.322 nm) to 0.288 nm (0.314 nm). The orientation of the water dipole in the first solvation shell of Rb$$^+$$ and a central water molecule is sensitive to pressure, but that in the first solvation shell of Cl$$^-$$ does not change very much. The number of contact-ion pairs Rb$$^+$$-Cl$$^-$$ decreases with elevated temperature and increases with elevated pressure. Water molecules are closely packed, and the tetrahedral hydrogen-bonded network of water molecules no longer exists in extreme conditions.

Journal Articles

Improvement of probabilistic fracture mechanics analysis code PASCAL-SP regarding stress corrosion cracking in nickel based alloy weld joint of piping system in boiling water reactor

Mano, Akihiro; Yamaguchi, Yoshihito; Katsuyama, Jinya; Li, Y.

Journal of Pressure Vessel Technology, 144(1), p.011506_1 - 011506_9, 2022/02

 Times Cited Count:1 Percentile:20.34(Engineering, Mechanical)

In the past few decades, the cracks because of stress corrosion cracking (SCC) have been detected in the dissimilar weld joints welded using nickel based alloy in piping system of boiling water reactors. Thus, the structural integrity assessment for such weld joints has become important. Nowadays, probabilistic fracture mechanics (PFM) analysis is recognized as a rational method for structural integrity assessment because it can consider inherent uncertainties of various influencing factors as probability distributions and quantitatively evaluate the failure probability of a cracked component. The Japan Atomic Energy Agency has developed a PFM analysis code PASCAL-SP for a probabilistic structural integrity assessment of weld joint in pipe in nuclear power plant. This study improves the analysis functions of PASCAL-SP for weld joint welded using nickel based alloy in boiling water reactor susceptible to SCC. As an analysis example of the improved version of PASCAL-SP, the failure probability of a weld joint is quantitatively evaluated. Furthermore, sensitivity analyses are conducted concerning the effect of leak detection and in-service inspection. From the analysis results, it is concluded that the improved version of PASCAL-SP is useful for structural integrity assessment.

Journal Articles

A Novel method to uniquely determine the parameters in Gurson-Tvergaard-Needleman model

Zhang, T.; Lu, K.; Mano, Akihiro; Yamaguchi, Yoshihito; Katsuyama, Jinya; Li, Y.

Fatigue & Fracture of Engineering Materials & Structures, 44(12), p.3399 - 3415, 2021/12

 Times Cited Count:14 Percentile:81.94(Engineering, Mechanical)

The Gurson-Tvergaard-Needleman (GTN) model is considered a promising approach in failure prediction as it takes the micromechanical behavior of ductile metals into consideration and its function exhibits a relatively clear physical meaning. Although the GTN model has been widely investigated in the past decades, its engineering applications have scarcely progressed due to the difficulty in determining the eight strongly coupled parameters. Based on the physical background of GTN model, a set of methods was established to determine the parameters in the GTN model. The knowledge of continuum damage mechanics was used to experimentally determine the development of void volume fraction through the variation of effective Young's modulus in a uniaxial tensile test, and three parameters regarding void nucleation were analytically derived using a newly established method. Other parameters in the GTN model were also uniquely determined through a joint use of the chemical composition analysis (for the initial void volume fraction), the cell model analyses (for the two constitutive parameters), and the inverse finite element method (for the two failure parameters). The reliability of this novel parameter determination method was verified through the failure prediction of both cracked and uncracked specimens of carbon steel STPT410.

Journal Articles

Thermally altered subsurface material of asteroid (162173) Ryugu

Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.

Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03

 Times Cited Count:43 Percentile:96.93(Astronomy & Astrophysics)

Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 $$^{circ}$$C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200 $$^{circ}$$C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.

JAEA Reports

User's manual and analysis methodology of probabilistic fracture mechanics analysis code PASCAL-SP Ver. 2 for piping (Contract research)

Yamaguchi, Yoshihito; Mano, Akihiro; Katsuyama, Jinya; Masaki, Koichi*; Miyamoto, Yuhei*; Li, Y.

JAEA-Data/Code 2020-021, 176 Pages, 2021/02

JAEA-Data-Code-2020-021.pdf:5.26MB

In Japan Atomic Energy Agency, as a part of researches on the structural integrity assessment and seismic safety assessment of aged components in nuclear power plants, a probabilistic fracture mechanics (PFM) analysis code PASCAL-SP (PFM Analysis of Structural Components in Aging LWR - Stress Corrosion Cracking at Welded Joints of Piping) has been developed to evaluate failure probability of piping. The initial version was released in 2010, and after that, the evaluation targets have been expanded and analysis functions have been improved based on the state-of-the art technology. Now, it is released as Ver. 2.0. In the latest version, primary water stress corrosion cracking in the environment of Pressurized Water Reactor, nickel based alloy stress corrosion cracking in the environment of Boiling Water Reactor, and thermal embrittlement can be taken into account as target age-related degradation. Also, many analysis functions have been improved such as incorporations of the latest stress intensity factor solutions and uncertainty evaluation model of weld residual stress. Moreover, seismic fragility evaluation function has been developed by introducing evaluation methods including crack growth analysis model considering excessive cyclic loading due to large earthquake. Furthermore, confidence level evaluation function has been incorporated by considering the epistemic and aleatory uncertainties related to influence parameters in the probabilistic evaluation. This report provides the user's manual and analysis methodology of PASCAL-SP Ver. 2.0.

Journal Articles

Discriminative measurement of absorbed dose rates in air from natural and artificial radionuclides in Namie Town, Fukushima Prefecture

Ogura, Koya*; Hosoda, Masahiro*; Tamakuma, Yuki*; Suzuki, Takahito*; Yamada, Ryohei; Negemi, Ryoju*; Tsujiguchi, Takakiyo*; Yamaguchi, Masaru*; Shiroma, Yoshitaka*; Iwaoka, Kazuki*; et al.

International Journal of Environmental Research and Public Health, 18(3), p.978_1 - 978_16, 2021/02

 Times Cited Count:7 Percentile:68.83(Environmental Sciences)

Journal Articles

Measurement of double-differential thick-target neutron yields of the C($$d,n$$) reaction at 12, 20, and 30 MeV

Patwary, M. K. A*; Kin, Tadahiro*; Aoki, Katsumi*; Yoshinami, Kosuke*; Yamaguchi, Masaya*; Watanabe, Yukinobu*; Tsukada, Kazuaki; Sato, Nozomi*; Asai, Masato; Sato, Tetsuya; et al.

Journal of Nuclear Science and Technology, 58(2), p.252 - 258, 2021/02

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

While designing deuteron accelerator neutron sources for radioisotopes production, nuclear data for light elements such as Li, Be, and C have been systematically measured in the deuteron energy range from a few MeV to around 50 MeV. Currently, the experimental data available on double-differential thick-target neutron yields (DDTTNYs) is insufficient, especially for deuteron energies between 18 and 33 MeV. In this study, we measured the DDTTNYs of ($$d,n$$) reactions on $$^{rm nat}$$C target for incident deuteron energies of 12, 20, and 30 MeV using the multiple-foils activation method to improve nuclear data insufficiency. We applied the GRAVEL code for the unfolding process to derive the DDTTNYs. The results were compared with the calculation by DEURACS. The present data were also used to confirm the systematics of the differential neutron yields at 0$$^{circ}$$ and total neutron yield per incident deuteron in the wide range of deuteron energy.

Journal Articles

A Unique high natural background radiation area; Dose assessment and perspectives

Hosoda, Masahiro*; Nugraha, E. D.*; Akata, Naofumi*; Yamada, Ryohei; Tamakuma, Yuki*; Sasaki, Michiya*; Kelleher, K.*; Yoshinaga, Shinji*; Suzuki, Takahito*; Rattanapongs, C. P.*; et al.

Science of the Total Environment, 750, p.142346_1 - 142346_11, 2021/01

 Times Cited Count:23 Percentile:86.19(Environmental Sciences)

The biological effects of low dose-rate radiation exposures on humans remains unknown. In fact, the Japanese nation still struggles with this issue after the Fukushima Dai-ichi Nuclear Power Plant accident. Recently, we have found a unique area in Indonesia where naturally high radiation levels are present, resulting in chronic low dose-rate radiation exposures. We aimed to estimate the comprehensive dose due to internal and external exposures at the particularly high natural radiation area, and to discuss the enhancement mechanism of radon. A car-borne survey was conducted to estimate the external doses from terrestrial radiation. Indoor radon measurements were made in 47 dwellings over three to five months, covering the two typical seasons, to estimate the internal doses. Atmospheric radon gases were simultaneously collected at several heights to evaluate the vertical distribution. The absorbed dose rates in air in the study area vary widely between 50 nGy h$$^{-1}$$ and 1109 nGy h$$^{-1}$$. Indoor radon concentrations ranged from 124 Bq m$$^{-3}$$ to 1015 Bq m$$^{-3}$$. That is, the indoor radon concentrations measured exceed the reference levels of 100 Bq m$$^{-3}$$ recommended by the World Health Organization. Furthermore, the outdoor radon concentrations measured were comparable to the high indoor radon concentrations. The annual effective dose due to external and internal exposures in the study area was estimated to be 27 mSv using the median values. It was found that many residents are receiving radiation exposure from natural radionuclides over the dose limit for occupational exposure to radiation workers. This enhanced outdoor radon concentration might be as a result of the stable atmospheric conditions generated at an exceptionally low altitude. Our findings suggest that this area provides a unique opportunity to conduct an epidemiological study related to health effects due to chronic low dose-rate radiation exposure.

Journal Articles

Local structure of rare earth elements (REE) in marine ferromanganese oxides by extended X-ray absorption fine structure and its comparison with REE in ion-adsorption type deposits

Nagasawa, Makoto*; Qin, H.-B.*; Yamaguchi, Akiko; Takahashi, Yoshio*

Chemistry Letters, 49(8), p.909 - 911, 2020/08

 Times Cited Count:3 Percentile:10.1(Chemistry, Multidisciplinary)

Journal Articles

Degradation prediction of a gamma-ray radiation dosimeter using InGaP solar cells in a primary containment vessel of the Fukushima Daiichi Nuclear Power Station

Okuno, Yasuki; Yamaguchi, Masafumi*; Okubo, Nariaki; Imaizumi, Mitsuru*

Journal of Nuclear Science and Technology, 57(4), p.457 - 462, 2020/04

 Times Cited Count:7 Percentile:61.94(Nuclear Science & Technology)

Indium gallium phosphide (InGaP) solar cell with a superior high-radiation resistance is expected to be a powerful candidate for a dosimeter under a high-radiation dose rate environment. In this study, in order to predict the lifetime as the dosimeter using the InGaP solar cell, we clarify the effect of minority-carrier diffusion length ($$L$$) on a radiation-induced current as a dose signal in the InGaP solar cell by irradiation tests and empirical calculations. In the irradiation tests, the short circuit current density ($$J_{rm sc}$$) as a function of the gamma-ray dose rate is measured to estimate the $$L$$ for the InGaP solar cell by irradiation tests. The operational lifetime as a detector using the InGaP solar cell under various dose rates is estimated by using the empirical calculations based on the relation between the L and absorbed dose. The results suggest that the dosimeter using InGaP solar cell is able to be used during more than 10 h in the primary containment vessel of the Fukushima Daiichi Nuclear Power Plant and it has a high potential of being a radiation-resistant dosimeter that would contribute to the decommissioning.

Journal Articles

A New probabilistic evaluation model for weld residual stress

Mano, Akihiro; Katsuyama, Jinya; Miyamoto, Yuhei*; Yamaguchi, Yoshihito; Li, Y.

International Journal of Pressure Vessels and Piping, 179, p.103945_1 - 103945_6, 2020/01

 Times Cited Count:1 Percentile:12.35(Engineering, Multidisciplinary)

Weld residual stress (WRS) is one of the most important factors in the structural integrity assessment of piping welds, and it is considered a driving force for crack growth. It is characterized by large uncertainty. For more rational assessment, it is important to consider the uncertainty of WRS for evaluating crack growth behavior in probabilistic fracture mechanics (PFM) analysis. In existing PFM analysis codes, WRS uncertainty is set by statistically processing the results of multiple finite element analyses. This process depends on the individual performing PFM analysis, which may lead to uncertainties whose sources would be different from the original WRS. In this study, we developed a new WRS evaluation model based on Fourier transformation, and the model was incorporated into PASCAL-SP, which has been developed by Japan Atomic Energy Agency. Through improvements to the code, WRS uncertainty can be considered automatically and appropriately by inputting multiple WRS analysis results directly as input data for PFM analysis.

Journal Articles

The Effect of alkyl ammonium ionic liquids on thermal denaturation aggregation of $$beta$$-lactoglobulin

Yoshida, Koji*; Zenin, Tomohiro*; Fujiyoshi, Ayako*; Sanada, Yusuke*; Yamaguchi, Toshio*; Murata, Kunihiko*; Takata, Shinichi; Hiroi, Kosuke; Takahiro, Takekiyo*; Yoshimura, Yukihiro*

Journal of Molecular Liquids, 293, p.111477_1 - 111477_9, 2019/11

 Times Cited Count:8 Percentile:39.14(Chemistry, Physical)

376 (Records 1-20 displayed on this page)