Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 20
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Geological investigations using cosmic ray muons; A Trial to detect fault at the Mizunami Underground Research Laboratory

Sasao, Eiji; Suzuki, Keiichi*; Yamada, Nobuto*; Kuboshima, Koji*

Proceedings of 12th SEGJ International Symposium (USB Flash Drive), 4 Pages, 2015/11

We performed investigation of a fault with thick and clay-altered damaged zone in granitic rock using cosmic ray muons at the Mizunami Underground Research Laboratory. Geology of the Laboratory consists of sedimentary rock and underlying granite with unconformable contact at the 170 meters below ground level (G.L.). A vertical fault with a thick, clay-altered damaged zone is present in the granite. The muon telescopes were settled at the G.L.-200 and -300 meters to estimate densities of granite and fault. Densities of granite, fault and sedimentary rock are calculated as 3.38, 2.88 and 1.99 g/cm$$^{3}$$, respectively. The obtained density is obviously higher than absolute value, though the reason of such difference is not clear at the moment. If the density of granite is assumed to be 2.6 g/cm$$^{3}$$, then the densities of fault and sedimentary rock are re-calculated as 2.2 and 1.5 g/cm$$^{3}$$. This result indicates that cosmic ray muons have good potential to detect geological structure.

JAEA Reports

Results of borehole investigation in -500m access/research gallery-north (13MI38$$sim$$13MI44 Boreholes)

Hasegawa, Takashi; Kawamoto, Koji; Yamada, Nobuto; Onuki, Kenji; Omori, Kazuaki; Takeuchi, Ryuji; Iwatsuki, Teruki; Sato, Toshinori

JAEA-Technology 2015-011, 135 Pages, 2015/07

JAEA-Technology-2015-011.pdf:28.63MB
JAEA-Technology-2015-011-appendix(CD-ROM).zip:566.32MB

The geological, hydraulic and geochemical data such as rock mass classification, groundwater inflow points and the volume, water pressure, and hydraulic conductivity were obtained from boreholes (13MI38$$sim$$13MI44) in the -500m Access/Research Gallery-North of Mizunami Underground Research laboratory (MIU). In addition to data acquisition, monitoring systems were installed to observe hydrochemical changes in the groundwater, and rock strain during and after the groundwater recovery experiment.

JAEA Reports

Mizunami Underground Research Laboratory Project; Data compilation of boreholes in shafts and research galleries (12MI27$$sim$$14MI51 Boreholes)

Kuroiwa, Hiroshi*; Kawamoto, Koji; Yamada, Nobuto; Sasao, Eiji

JAEA-Data/Code 2015-003, 108 Pages, 2015/06

JAEA-Data-Code-2015-003.pdf:10.4MB
JAEA-Data-Code-2015-003(errata).pdf:1.51MB
JAEA-Data-Code-2015-003-appendix(CD-ROM).zip:1150.87MB

Japan Atomic Energy Agency (JAEA) is performing the Mizunami Underground Research Laboratory (MIU) Project, which is a scientific study of the deep geological environment as a basis of research and development for geological disposal of high level radioactive wastes (HLW), in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in the crystalline rock. The MIU Project has three overlapping phases, Surface-based investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). This report compiles the data of results from borehole investigations which has been carried out in the research gallery in the fiscal year from 2012 to 2014. These data include results of core observation, geophysical logging, and so on.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2013

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Kawamoto, Koji; Yamada, Nobuto; Ishibashi, Masayuki; Murakami, Hiroaki; Matsuoka, Toshiyuki; Sasao, Eiji; Sanada, Hiroyuki; et al.

JAEA-Review 2014-038, 137 Pages, 2014/12

JAEA-Review-2014-038.pdf:162.61MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2013. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2013, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

JAEA Reports

Results of pilot borehole investigation in -500m access/research gallery-south (12MI32 borehole)

Kawamoto, Koji; Kuroiwa, Hiroshi; Yamada, Nobuto; Onuki, Kenji; Omori, Kazuaki; Takeuchi, Ryuji; Ogata, Nobuhisa; Omori, Masaki; Watanabe, Kazuhiko

JAEA-Technology 2014-011, 92 Pages, 2014/07

JAEA-Technology-2014-011.pdf:24.65MB
JAEA-Technology-2014-011-appendix(DVD).zip:331.54MB

This document summarizes the data of pilot boreholes (12MI32) in the -500m Access/Research Gallery-South. The geological, hydraulic and geochemical data were obtained. In addition, groundwater monitoring system was installed to observe the groundwater pressure in initial condition and change during the excavation of gallery. The results of investigation, biotite granite with medium to coarse-grained equigranular texture are characterized. Rock mass classification is B from CM class. Minor fault with fault breccia are observed around 48.90mabh. However, S200_13 fault and IF_SB3_13_3 fault (that were presumed by an original model) were not observed. Density of fracture is large in the section of 40.00 to 80.00mabh. Water inflow was a maximum of 600 L/min in 78.83mabh. Permeability ranges from 2.0E-9 to 1.5E-08m/sec at the zone with low inflow, from 1.1E-05 to 1.6E-05m/sec at the zone with high inflow, respectively. Groundwater chemistry is rich in Na and Cl ion.

JAEA Reports

Overall report of ground geophysical survey using electromagnetic method

Hasegawa, Ken; Yamada, Nobuto; Koide, Kaoru

JAEA-Research 2014-004, 177 Pages, 2014/06

JAEA-Research-2014-004.pdf:36.19MB

Tono Geoscience Center conducted CSMT and MT surveys in the region of the Toki granite from 1997 to 1999, as a part of the Regional Hydrogeological Study. After these surveys were performed, applicability of MT method to prospecting of the deeper part of the granite was evaluated. As a result, several problems of CSMT and MT surveys were pointed out. Accordingly, we checked the quality of data obtained through the surveys and found out that the interpretation results of the underground resistivity distribution are deficient in reliability because almost all data contain large artificial electromagnetic noise. Major reason behind its poor results is adoption of the high-frequency tensor CSMT system. Because of its ease of data acquisition, it was adopted without investigation of electromagnetic noises around the survey area. This fact indicated that we must investigate details of the noise around survey area in advance and select optimum equipment and survey specifications, which can distinguish a signal from data containing such large noise.

JAEA Reports

Results of pilot borehole investigation in -500m access/research gallery-north (12MI27 and 12MI33 boreholes)

Tsuyuguchi, Koji; Kuroiwa, Hiroshi; Kawamoto, Koji; Yamada, Nobuto; Onuki, Kenji; Iwatsuki, Teruki; Takeuchi, Ryuji; Ogata, Nobuhisa; Suto, Masahiro; Mikake, Shinichiro

JAEA-Technology 2013-044, 89 Pages, 2014/02

JAEA-Technology-2013-044.pdf:11.09MB
JAEA-Technology-2013-044-appendix(CD-ROM).zip:316.8MB

This document summarizes the data of pilot boreholes (12MI27, 12MI33) in the -500m Access/Research Gallery-North. The geological, hydraulic and geochemical data were obtained. In addition, groundwater monitoring system was installed in closure test gallery for the flooding test in phase III research. The results of investigation, biotite granite with medium to coarse-grained equigranular texture are characterized. Rock mass classification is B from CH class. Minor fault with fault gouge that was not presumed by an original model are observed in 12MI33. Density of fracture in 12MI27 near the Main-shaft fault tends to be compared to 12MI33. Water inflow in both boreholes is less. Permeability ranges from 4.8E-10 to 6.1E-09m/sec at the zone without alteration and with low inflow, from 1.1E-07 to 2.7E-07m/sec at the zone without alteration and with high inflow, respectively. Groundwater chemistry is rich in Na and Cl ion.

JAEA Reports

Re-interpretation of data obtained by airborne geophysical survey using helicopter

Hasegawa, Ken; Yamada, Nobuto; Endo, Yoshinobu*; Koide, Kaoru

JAEA-Research 2013-028, 83 Pages, 2013/12

JAEA-Research-2013-028.pdf:18.29MB

To evaluate the applicability of the airborne geophysical methods to granitic area, Tono Geoscience Center conducted the airborne geophysical survey using helicopter in the region of the Toki granite from 1997 to 1999. Data of electromagnetic survey, magnetic survey and radiometric survey were collected. This time, we re-interpreted these data. The following is the summary of the results obtained. (1) Electromagnetic survey; We developed the new calculation method and the data was reprocessed. As a result, it made us possible to obtain the apparent resistivity value corresponding to the rock resistivity. And the new apparent resistivity contour map clearly shows the depth changes of the granitic rock. (2) Magnetic survey; Magnetic susceptibility of the target granite is not uniform. From the viewpoint of magnetic susceptibility, the granite is divided into about five parts using a color shaded relief map. This map is a very useful tool for a qualitative interpretation of magnetic data. (3) Radiometric Survey; Some local anomalies were obtained. It is inferred that they correspond with the autocrops of the granitic rocks or the uranium deposits, not with the open fractures. These results indicate that an airborne geophysical survey using helicopter provides the useful information for planning of the geological and geophysical ground surveys.

JAEA Reports

Reverse Vertical Seismic Profiling using vibration during the construction of underground facility

Matsuoka, Toshiyuki; Hodotsuka, Yasuyuki*; Yamada, Nobuto

JAEA-Research 2012-028, 70 Pages, 2012/11

JAEA-Research-2012-028.pdf:19.33MB

Reverse Vertical Seismic Profiling (R-VSP) using vibration during the construction of underground facility has been carried out at the MIU construction site to develop the technique that estimate the 3-dimensional geological structure. In this report, we apply plural data processing/analysis methods (VSP-CDP transform, VSP migration, IP transform and seismic interferometory) to observed vibration data (blasting data, drilling vibration data and construction noise data), and discuses the applicability of the R-VSP. In this study, geological structures such as unconformities between sedimentary rocks and granite, and steep faults were extracted using applied prual data processing/analysis methods. We conclude that it is likely that the R-VSP using various vibration data and prual data processing/analysis, can apply to estimate the 3-dimensional geological structure.

Journal Articles

Development of geophysical survey technique using the vibration caused by the shafts excavation in the granite; Application of seismic interferometry

Hodotsuka, Yasuyuki; Matsuoka, Toshiyuki; Tsuruta, Tadahiko; Yamada, Nobuto*; Ishigaki, Koichi*; Yamaguchi, Shinji*

Shadan Hojin Butsuri Tansa Gakkai Dai-119-Kai (Heisei-20-Nendo Shuki) Gakujutsu Koenkai Koen Rombunshu, p.61 - 64, 2008/10

Seismic interferometry using the vibration under the construction works such as borehole drilling, mucking, blasting etc., had been carried out to develop the method that obtain three-dimensional geological image, around the Mizunami Underground Research Laboratory. In this study, we discussed the applicability of this method analytical accuracy depending on vibration resource types.

Journal Articles

Development of geophysical survey technique using the vibration caused by the shafts excavation in the granite; Application of reverse VSP

Matsuoka, Toshiyuki; Hodotsuka, Yasuyuki; Tsuruta, Tadahiko; Ishigaki, Koichi*; Yamada, Nobuto*; Yamaguchi, Shinji*

Shadan Hojin Butsuri Tansa Gakkai Dai-119-Kai (Heisei-20-Nendo Shuki) Gakujutsu Koenkai Koen Rombunshu, p.65 - 67, 2008/10

A reverse VSP (R-VSP) using the blasting vibration been carried out to obtain three-dimensional geological image around the Mizunami Underground Research Laboratory under the shaft excavation works. In this study, the applicability of this method was discussed.

Journal Articles

Seismic interferometry using long time measured microtremor

Yamada, Nobuto*; Ishigaki, Koichi*; Yamaguchi, Shinji*; Narita, Norifumi*; Matsuoka, Toshiyuki; Hodotsuka, Yasuyuki; Matsuoka, Toshifumi*

Shadan Hojin Butsuri Tansa Gakkai Dai-117-Kai (Heisei-19-Nendo Shuki) Gakujutsu Koenkai Koen Rombunshu, p.146 - 148, 2007/10

Seismic interferometry synthesizes the Green's function between two receivers by calculating cross-correlation of records measured at their locations. In Japan Atomic Energy Agency(JAEA), Seismic Interferometry using blasting vibration caused by the shafts excavation had been carried out to investigate the geologic structure in the surrounding area. The result was identical to the existing seismic reflection section. In this study, we applied this technique to long time measured microtremor. The result was also identical to the results of existing section and seismic interferometry using blasting vibration caused by the shafts excavation.

Oral presentation

Reverse vertical seismic profiling using blasting vibration for shaft excavation in granite

Matsuoka, Toshiyuki; Yamada, Nobuto

no journal, , 

A Reverse Vertical Seismic Profiling (RVSP) using the blasting vibration had been carried out to obtain three-dimensional geological image such as faults and fracture zones around the Mizunami Underground Research Laboratory under the shaft excavation works. In this study, results of RVSP were compared with existing information such as borehole investigation data and geological model to estimate spatial distribution of faults and fracture zones, and the applicability of this method to estimate geological structure in the granite was discussed. As the result, geological structures such as unconformities between sedimentary rocks and granite, fracture zones and steep faults were extracted using applied plural data processing/analysis methods.

Oral presentation

Reverse vertical seismic profiling using the research gallery in granite

Yamada, Nobuto; Matsuoka, Toshiyuki; Ishigaki, Koichi*; Kanazawa, Yohei*; Tokuyasu, Shingo*; Nakahara, Junichi*

no journal, , 

Evaluation on the geological discontinuity is one of the important issues for safety assessment of high-level radioactive waste disposal. A Reverse Vertical Seismic Profiling (RVSP) investigation using blasting vibration for excavation of the research gallery and survey lines placed in the -300m research galleries of the Mizunami Underground Research Laboratory has been carried out to obtain three-dimensional information on the geological discontinuity such as faults and fracture zones in granite during the research galleries excavation works. In this study, results of RVSP are compared with existing information such as sonic logging to estimate spatial distribution of faults and fracture zones, and the applicability of this method to estimate geological structure in the granite is discussed.

Oral presentation

Mizunami Underground Research Laboratory Project; Geological investigations

Sasao, Eiji; Yamada, Nobuto; Kuroiwa, Hiroshi; Kuboshima, Koji; Kawamoto, Koji; Ishibashi, Masayuki; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Murakami, Hiroaki

no journal, , 

no abstracts in English

Oral presentation

Feasibility study for the geological survey using cosmic ray muons; An Attempt in the underground gallery of the Mizunami Underground Research Laboratory

Yamada, Nobuto; Sasao, Eiji; Kuboshima, Koji*; Suzuki, Keiichi*

no journal, , 

JAEA and KGE perform the joint research on cosmic ray muons applying detection of sub-surface geological structure such as fault, using the research gallery of the Mizunami Underground Research Laboratry. We set the detectors of cosmic ray muons in the underground gallery to assess its applicability for estimating geological structure in deep underground. We estimate the geological structure by the number of cosmic ray muons observed from November 2013 to August 2014 and confirm that we can observe the substantial number of cosmic ray muons to estimate the geological structure in the research gallery of granite at G.L.-300m.

Oral presentation

GPR survey for granite at the Mizunami Underground Research Laboratory

Yamada, Nobuto; Suzuki, Keiichi*; Kanazawa, Sunao*; Tsuge, Takashi*

no journal, , 

To evaluate the distribution of geological discontinuity such as fractures around the underground gallery is one of the important factors to conduct high level radioactive waste disposal, but it is difficult to evaluate them enough only by geological survey such as boring investigations. We carried out GPR to obtain the distribution of fractures exist nearby the underground gallery of granite in Mizunami Underground Research Laboratory, and understand that we can detect them by GPR.

Oral presentation

Mizunami Underground Research Laboratory Project; Geological investigations

Ishibashi, Masayuki; Kawamoto, Koji; Sasao, Eiji; Murakami, Hiroaki; Yamada, Nobuto

no journal, , 

no abstracts in English

Oral presentation

Joint research between KGE and JAEA; Feasibility study for the geological survey in deep underground using cosmic ray muons

Yamada, Nobuto; Sasao, Eiji; Suzuki, Keiichi*; Kuboshima, Koji*; Kanazawa, Sunao*

no journal, , 

JAEA and KGE perform the joint research on cosmic ray muons applying detection of sub-surface geological structure such as fault, using the research gallery of the Mizunami Underground Research Laboratory. We set the detectors of cosmic ray muons in the underground gallery to evaluate its applicability for estimating geological structure in deep underground. We estimate the geological structure by the number of cosmic ray muons observed from November 2013 to August 2014 and confirm that we can observe the substantial number of cosmic ray muons to estimate the geological structure in the research gallery of granite at -300m underground.

Oral presentation

Joint research between KGE and JAEA; Feasibility study for the geological survey in deep underground using cosmic ray muons

Sasao, Eiji; Yamada, Nobuto*; Suzuki, Keiichi*; Kuboshima, Koji*

no journal, , 

We performed investigation of fault with thick and clay-altered damaged zone in granitic rock used by cosmic ray muons at the Mizunami Underground Research Laboratory. Geology of investigated site consists of sedimentary sequence and underlying granite with unconformable contact at the 170 meters below ground level (G.L.). A fault with thick and clay-altered damaged zone is vertically distributed in granite. The muon telescopes were settled at the G.L.-200 and -300 meters to estimate densities of granite and fault. Densities of granite, fault and sedimentary rock are calculated as 3.38, 2.88 and 1.99 g/cm$$^{3}$$, respectively. The obtained density is obviously higher than absolute value, though the reason of such difference is not clear at the moment. If the density of granite is assumed to be 2.6 g/cm$$^{3}$$, then the densities of fault and sedimentary rock are re-calculated as 2.2 and 1.5 g/cm$$^{3}$$. This result indicates that cosmic ray muons have good potential to detect geological structure.

20 (Records 1-20 displayed on this page)
  • 1