Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Application of the transient pulse method to measure clay permeability

Kato, Masaji*; Nara, Yoshitaka*; Okazaki, Yuki*; Kono, Masanori*; Sato, Toshinori; Sato, Tsutomu*; Takahashi, Manabu*

Materials Transactions, 59(9), p.1427 - 1432, 2018/09

 Times Cited Count:6 Percentile:32.61(Materials Science, Multidisciplinary)

To ensure the safe geological disposal of radioactive waste, it is important to determine the permeability (hydraulic conductivity) of clays. The transient pulse method is suitable for low-permeability materials because it requires a relatively short time to determine their permeability. Upstream pore pressure typically increases in the measurement conducted via the transient pulse method. However, this procedure cannot be used to determine the permeability of clays due to the increase in pore pressure. Therefore, the transient pulse method has never been applied to determine clay permeability. In this study, we applied the transient pulse method to a clay sample to determine its permeability while decreasing the downstream pore pressure.

Journal Articles

Application of transient pulse method to permeability measurement for clay

Kato, Masaji*; Nara, Yoshitaka*; Okazaki, Yuki*; Kono, Masanori*; Sato, Toshinori; Sato, Tsutomu*; Takahashi, Manabu*

Zairyo, 67(3), p.318 - 323, 2018/03

To ensure the safe geological disposal of radioactive wastes, it is important to determine the permeability of clays. The transient pulse test is suitable to apply to the low permeability materials, because it takes relatively short term to determine the permeability. Usually we increase the upstream pore pressure in the measurement with the transient pulse test. However, it is impossible to determine the permeability of clay in this procedure because of the increase of pore pressure. Therefore, the transient pulse test has never been applied to the determination of permeability of clays. In this study, we tried to apply the transient pulse test to a clay obtained in Mizunami Underground Research Laboratory to determine the permeability with decreasing the downstream pore pressure. It was clarified that the transient pulse test with decreasing downstream pore pressure is appropriate from the measurements of granite and sandstone. It was shown that the permeability of a clay was determined by the transient pulse test with decreasing the downstream pore pressure, which agreed with the permeability determined from the falling head test. The measurement time of the transient pulse test is much shorter than that of the falling head test. It is concluded that the transient pulse test is appropriate for the determination of the permeability of clays.

Oral presentation

Estimation of hydraulic aperture of fracture with in-filling minerals in granite

Kato, Masaji*; Nara, Yoshitaka*; Okazaki, Yuki*; Kono, Masanori*; Sato, Toshinori; Sato, Tsutomu*; Fukuda, Daisuke*; Takahashi, Manabu*

no journal, , 

Hydraulic aperture of fracture with in-filling minerals in granite are estimated using result of hydraulic test.

Oral presentation

Change of permeability in macro-fractured granite under flow of water including clays

Nara, Yoshitaka*; Kato, Masaji*; Okazaki, Yuki*; Kono, Masanori*; Fukuda, Daisuke*; Sato, Tsutomu*; Sato, Toshinori; Takahashi, Manabu*

no journal, , 

Change of permeability in macro-fractured granite under flow of water including clays was observed. The result indicated that permeability decreased 3 to 4 orders of magnitude due to filling of clay to macro-fracture in granite.

4 (Records 1-4 displayed on this page)
  • 1