Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 76

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Response reduction effect of seismic isolation system considering uncertainty parameters for seismic margin assessment

Yamano, Hidemasa; Okamura, Shigeki*

Transactions of 26th International Conference on Structural Mechanics in Reactor Technology (SMiRT-26) (Internet), 9 Pages, 2022/07

Seismic response analyses were conducted for the pipe with and without the seismic isolation system based on the response waveforms. This study performed a fragility analysis by setting uncertainty parameters on the basis of existing studies. The comparison results showed that the seismic isolation technology is effective for the pipe to prevent cliff-edge effects. In other words, the seismic margin for the seismically isolated plant is 1.2 times larger than that of the non-isolated plant. To evaluate the response reduction effect, this study focused on response coefficients of components as uncertainty parameters, which were specified within a physically possible range. Even if the uncertainty is considered, the HCLPF for the isolated plant is nearly twice as high as the non-isolated plant, namely the response reduction effect is still significant for the isolated plant. Therefore, the isolation technology is effective to avoid cliff-edge effects.

Journal Articles

Vibration test and fatigue test for failure probability evaluation method with integrated energy

Kinoshita, Takahiro*; Okamura, Shigeki*; Nishino, Hiroyuki; Yamano, Hidemasa; Kurisaka, Kenichi; Futagami, Satoshi; Fukasawa, Tsuyoshi*

Transactions of 26th International Conference on Structural Mechanics in Reactor Technology (SMiRT-26) (Internet), 7 Pages, 2022/07

The seismic evaluation of key components such as reactor vessel is important for the Seismic Probabilistic Risk Assessment (S-PRA) in a Sodium-Cooled Fast Reactor (SFR). Many components were damaged by cumulative damage like fatigue damage during seismic ground motion. However, general evaluation method for key components under seismic ground motion has been based on static loads and elastic region of materials. More accurate evaluation method for S-PRA, which can evaluate the failure of key components such as reactor vessels, has been actually required. In this study, failure probability evaluation method with integrated energy was developed by comparing the energy with vibration tests and fatigue tests. Vibration tests were performed to evaluate integrated vibration energy at failure by energy balance equation and fatigue tests were performed to evaluate integrated vibration energy at failure based on experimental results of fatigue tests.

Journal Articles

Estimation of creep behavior of thick rubber bearings from 47 years observation in an actual building

Masaki, Nobuo*; Kato, Koji*; Yamamoto, Tomohiko; Miyagawa, Takayuki*; Fujita, Satoshi*; Okamura, Shigeki*

Nihon Kenchiku Gakkai Gijutsu Hokokushu, 28(68), p.81 - 84, 2022/02

no abstracts in English

Journal Articles

Research and examination of seismic safety evaluation and function maintenance for important equipment in nuclear facilities

Furuya, Osamu*; Fujita, Satoshi*; Muta, Hitoshi*; Otori, Yasuki*; Itoi, Tatsuya*; Okamura, Shigeki*; Minagawa, Keisuke*; Nakamura, Izumi*; Fujimoto, Shigeru*; Otani, Akihito*; et al.

Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 6 Pages, 2021/07

Since the Fukushima accident, with the higher safety requirements of nuclear facilities in Japan, suppliers, manufacturers and academic societies have been actively considering the reconstruction of the safety of nuclear facilities from various perspectives. The Nuclear Regulation Authority has formulated new regulatory standards and is in operation. The new regulatory standards are based on defense in depth, and have significantly raised the levels of natural hazards and have requested to strengthen the countermeasures from the perspective of preventing the simultaneous loss of safety functions due to common factors. Facilities for dealing with specific serious accidents are required to have robustness to ensure functions against earthquakes that exceed the design standards to a certain extent. In addition, since the probabilistic risk assessment (PRA) and the safety margin evaluation are performed to include the range beyond the design assumption in the safety improvement evaluation, it is very important to extent the special knowledge in the strength of important equipment for seismic safety. This paper summarizes the research and examination results of specialized knowledge on the concept of maintaining the functions of important seismic facilities and the damage index to be considered by severe earthquakes. In the other paper, the study on reliability of seismic capacity analysis for important equipment in nuclear facilities will be reported.

Journal Articles

Fundamental study on seismic safety margin for seismic isolated structure using the laminated rubber bearings

Fukasawa, Tsuyoshi*; Miyagawa, Takayuki*; Uchita, Masato*; Yamamoto, Tomohiko; Miyazaki, Masashi; Okamura, Shigeki*; Fujita, Satoshi*

Nihon Kikai Gakkai Rombunshu (Internet), 87(898), p.21-00007_1 - 21-00007_17, 2021/06

This paper describes a fundamental study on the seismic safety margin for the isolated structure using laminated rubber bearings. The variation of the seismic response assumed in the isolated structure will occur under the superposition of "Variations in seismic response due to input ground motions" and "Error with design value accompanying manufacture of the isolation devices ". The seismic response analysis which allows to their conditions is important to assess the seismic safety margin for the isolated structure. This paper clarifies that the seismic safety margin of the isolated structure, which consists of rubber bearings, for Sodium-cooled Fast Reactor (SFR) is ensured against the basis ground motions of Japan Electric Association Guide 4601 (JEAG4601) and SFR through the seismic response analysis considering the variation factors of seismic response. In addition, a relationship between the seismic safety margin and the excess probability of linearity limits is discussed using the results of seismic response analysis.

Journal Articles

Core seismic experiment and analysis of full scale single model for fast reactor

Yamamoto, Tomohiko; Kitamura, Seiji; Iwasaki, Akihisa*; Matsubara, Shinichiro*; Okamura, Shigeki*

Proceedings of 2017 ASME Pressure Vessels and Piping Conference (PVP 2017) (CD-ROM), 10 Pages, 2017/07

To design fast reactor (FR) components, seismic response must be evaluated in order to ensure structural integrity. Therefore, a sophisticated analysis method has to be developed to study the seismic response of FR core. The fast reactors are made of several hundred core assemblies in hexagonal arrangement. When a big earthquake occurs, large horizontal displacement and impact force of each core assembly may cause a trouble for control rod insertability and core assembly intensity. Therefore, a seismic analysis method of fast reactor core considering horizontal nonlinear behavior, such as impact, fluid-structure interaction, etc. is needed. Validation of the core assembly vibration analysis code in three dimension (REVIAN-3D) was conducted by a full scale experiment. In this validation, the vertical behavior (raising displacement) and horizontal behavior (Impact force, horizontal response) of the analysis result agreed very well with the experiments.

Journal Articles

Research and development of thick rubber bearing for SFR; Aging properties tests of semi full-scale thick rubber bearing

Watakabe, Tomoyoshi; Yamamoto, Tomohiko; Fukasawa, Tsuyoshi*; Okamura, Shigeki*; Somaki, Takahiro*; Morobishi, Ryota*; Sakurai, Yu*; Kato, Koji*

Nihon Kikai Gakkai Rombunshu (Internet), 83(850), p.16-00444_1 - 16-00444_14, 2017/06

A seismic isolation system composed of a thick rubber bearing and an oil damper has been developed for Sodium-Cooled Fast Reactor. This paper focused on the aging properties of thick rubber bearings, such as basic mechanical properties and ultimate strength. Aging of the rubber bearings was reproduced using thermal degradation based on Arrhenius law.

Journal Articles

Development of seismic isolation systems for sodium-cooled fast reactors in Japan

Kawasaki, Nobuchika; Watakabe, Tomoyoshi; Wakai, Takashi; Yamamoto, Tomohiko; Fukasawa, Tsuyoshi*; Okamura, Shigeki*

Proceedings of 2016 ASME Pressure Vessels and Piping Conference (PVP 2016) (Internet), 8 Pages, 2016/07

Sodium-cooled Fast Reactors (SFRs) have components with thinner walls as compared with light water reactors, although Japan is an earthquake-prone country. Thus, seismic isolation systems have been conventionally employed in SFR system design to reduce seismic forces on the systems in Japan. Implementation of seismic design in the reactor core and buckling design in the reactor vessel requires 8 Hz (or less) vertical frequency's isolation system being applied. This paper introduces three isolation concepts to achieve the frequency. The isolation systems, which enable vertical 8 Hz natural frequency, comprise thicker laminated rubber bearings (TRBs). By combining coned disk springs with TRBs, vertical natural frequency is in a range from roughly 3 Hz to 5 Hz. Combining pneumatic springs to RBs and adding the rocking suppression system, vertical natural frequency becomes under 1 Hz. All isolation systems need horizontal damping like oil dampers. A vertical 8 Hz isolation system with TRBs and oil dampers is under development in Japan as a principal isolation concept. The reasons of choosing this system are its simplicity and the number of developing issues. Since TRBs and oil dampers are basic isolation elements, they can be applied to other isolation systems. The response acceleration of 5 Hz vertical isolation is 50% of that of 8 Hz based on the analytical survey. A series of static tests of coned disk springs was carried out to confirm design equations. Based on these knowledge, 5 Hz vertical isolation system with TRBs and the coned disk springs can be designed. The response acceleration of 1 Hz vertical isolation is 10% of that of 8 Hz. A rocking suppression system was studied in the past, and the further simplification of this system is the largest challenge for this concept. These three isolation concepts are isolation candidates for SFRs in Japan. To obtain enough seismic margins for each plant site, these isolation systems need to be developed.

Journal Articles

Development on rubber bearings for sodium-cooled fast reactor, 4; Aging properties of a half scale thick rubber bearings based on breaking test

Watakabe, Tomoyoshi; Yamamoto, Tomohiko; Fukasawa, Tsuyoshi*; Okamura, Shigeki*; Somaki, Takahiro*; Morobishi, Ryota*; Sakurai, Yu*; Kato, Koji*

Proceedings of 2016 ASME Pressure Vessels and Piping Conference (PVP 2016) (Internet), 8 Pages, 2016/07

A seismic isolation system composed of a thick rubber bearing and an oil damper has been developed for Sodium cooled Fast Reactor. One of the advantages of the isolation system is employing the thick rubber bearing in order to realize the longer vertical natural period of a plant, and it leads to mitigation of seismic loads to mechanical components. Rubber bearing technology has progressed based on many past studies, but test data regarding an aging effect is not enough. Also, there is no data of linear strain limit and breaking behavior for the thick rubber bearing after aging. This paper focuses on aging properties of the thick rubber bearing, such as basic mechanical properties and ultimate strength. An aging promote test of the thick rubber bearing was performed by using 1/2 scale and 1/8 scale rubber bearings. Aging of the rubber bearing was reproduced by thermal degradation, where the target aging period was 30 years and 60 years. The load deflection curves of the thick rubber bearing after aging were obtained through the horizontal and vertical static loading tests, and the aging effect was evaluated by comparing with the initial mechanical properties.

Journal Articles

Development on rubber bearings for sodium-cooled fast reactor, 3; Ultimate properties of a half scale thick rubber bearings based on breaking test

Fukasawa, Tsuyoshi*; Okamura, Shigeki*; Yamamoto, Tomohiko; Kawasaki, Nobuchika; Hirotani, Tsutomu*; Moriizumi, Eriko*; Sakurai, Yu*; Masaki, Nobuo*

Proceedings of 2016 ASME Pressure Vessels and Piping Conference (PVP 2016) (Internet), 10 Pages, 2016/07

Half-scale thick rubber bearing to investigate ultimate properties application for a Sodium-cooled-Fast-Reactor. The fundamental restoring-force characteristics of the thick rubber bearings has been already cleared through the static loading tests using a half-scale thick rubber bearing, 800 mm in diameter. However, variations of the restoring force characteristics and ultimate properties have not been obtained yet. The purpose of this paper is to indicate the variation of the stiffness and damping ratio concerning restoring force characteristics and the breaking strain or stress as ultimate properties through static loading tests using the half-scale thick rubber bearings.

Journal Articles

Parametric design study about seismic isolation system for fast reactor JSFR

Kawasaki, Nobuchika; Yamamoto, Tomohiko; Fukasawa, Tsuyoshi*; Okamura, Shigeki*

Proceedings of 2015 ASME Pressure Vessels and Piping Conference (PVP 2015) (Internet), 9 Pages, 2015/07

Japanese seismic conditions are getting severer and natural frequencies of components are getting lower due to the enlargements of components' size, therefore response accelerations and buckling margins of reactor vessels were parametrically surveyed with attention to thicknesses, diameters, and isolation frequencies for reviewing necessary isolation specification. RV installed floor responses and buckling margins were calculated based on this seismic condition. Expansion characteristic of isolation system was evaluated by parametric acceleration response analyses. Japanese seismic design condition may become severer than present one, and a natural frequency of main component may decrease. However based on the buckling margin with present plant specifications and the expansion characteristic of isolation system, the advanced isolation system with 8Hz vertical natural frequency was selected as the isolation system of JSFR at still present occasion.

Journal Articles

Development on rubber bearings for sodium-cooled fast reactor, 1; Examination plan

Yamamoto, Tomohiko; Kawasaki, Nobuchika; Fukasawa, Tsuyoshi*; Okamura, Shigeki*; Somaki, Takahiro*; Samejima, Yusuke*; Masaki, Nobuo*

Proceedings of 2015 ASME Pressure Vessels and Piping Conference (PVP 2015) (Internet), 7 Pages, 2015/07

Since a SFR (Sodium-cooled Fast Reactor) has thin-walled component structures, a seismic isolation system is employed to mitigate the seismic force. Seismic isolation system for applying the SFR consists of the laminated rubber bearing considering characteristics of SFR structures. This paper describes a basic mechanical characteristic examination with a 1/8 scale model and a characterization examination plan of half-scale laminated rubber.

Journal Articles

Development on rubber bearings for sodium-cooled fast reactor, 2; Fundamental characteristics of half-scale rubber bearings based on static test

Fukasawa, Tsuyoshi*; Okamura, Shigeki*; Yamamoto, Tomohiko; Kawasaki, Nobuchika; Somaki, Takahiro*; Sakurai, Yu*; Masaki, Nobuo*

Proceedings of 2015 ASME Pressure Vessels and Piping Conference (PVP 2015) (Internet), 10 Pages, 2015/07

This paper described the results of static loading tests using a half-scale rubber bearing model to investigate the fundamental characteristics such as restoring force of a rubber bearing applied to a Sodium-Cooled-Fast-Reactor (SFR). Since the SFR has thin-walled structures, a seismic isolation system is employed to mitigate the seismic force. The static loading tests were performed using the half-scale rubber bearing with a diameter of 800 mm in the range which exceeds a linear limit of horizontal direction and a yield stress of vertical direction to investigate the horizontal and vertical of each stiffness and damping ratio. The fundamental characteristic of rubber bearing employed to the SFR and the validity of a design formula became clear through the static tests.

Journal Articles

Seismic PRA for Japan Sodium-cooled Fast Reactor (JSFR)

Naruto, Kenichi*; Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa; Okano, Yasushi; Okamura, Shigeki*; Eto, Masao*

Proceedings of 9th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-9) (CD-ROM), 10 Pages, 2014/11

Journal Articles

Evaluation of Earthquake and Tsunami on JSFR

Chikazawa, Yoshitaka; Enuma, Yasuhiro; Kisohara, Naoyuki; Yamano, Hidemasa; Kubo, Shigenobu; Hayafune, Hiroki; Sagawa, Hiroshi*; Okamura, Shigeki*; Shimakawa, Yoshio*

Proceedings of 2012 International Congress on Advances in Nuclear Power Plants (ICAPP '12) (CD-ROM), p.677 - 686, 2012/06

Evaluation of Earthquake and Tsunami on JSFR has been analyzed. For seismic design, safety components are confirmed to maintain their functions even against recent strong Earthquakes. As for Tsunami, some parts of reactor building might be submerged including component cooling water system whose final heat sink is sea water. However, in the JSFR design, safety grade components are independent from component cooling water system (CCWS). The JSFR emergency power supply adopts a gas turbine system with air cooling, since JSFR does not basically require quick start-up of the emergency power supply thanks to the natural convection DHRS. Even in case of long station blackout, the DHRS could be activated by emergency batteries or manually and be operated continuously by natural convection.

Journal Articles

Conceptual design study of JSFR, 2; Reactor system

Eto, Masao*; Kamishima, Yoshio*; Okamura, Shigeki*; Watanabe, Osamu*; Oyama, Kazuhiro*; Negishi, Kazuo; Kotake, Shoji*; Sakamoto, Yoshihiko; Kamide, Hideki

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles (FR 2009) (CD-ROM), 10 Pages, 2012/00

In the JSFR design, the diameter of the Reactor Vessel (RV) shall be minimized and the reactor internal structures shall be simplified for reduction in construction cost. The reduction in the RV diameter is achieved by adopting an advanced refueling system and the hot RV with high temperature wall. The flow velocity in the reactor upper plenum increases because the diameter of the RV is decreased. As the result, the coolant flow field in reactor upper plenum is severe. The optimization of the coolant flow field in the reactor upper plenum was carried out for prevention the cover gas entrainment and the vortex cavitations at the hot leg intake. In addition, structural integrities for seismic loadings and thermal loadings were evaluated because the design seismic loading was highly increased and the vessel wall is directly exposed to the thermal transients of the upper plenum. This paper describes the characteristics and the results of the design study of the reactor system.

Journal Articles

Seismic isolation design for JSFR

Okamura, Shigeki*; Eto, Masao*; Kamishima, Yoshio*; Negishi, Kazuo; Sakamoto, Yoshihiko; Kitamura, Seiji; Kotake, Shoji*

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles (FR 2009) (CD-ROM), 10 Pages, 2012/00

This paper describes the seismic design of JSFR, which includes the seismic condition, the seismic isolation system and the seismic evaluation of primary component. JSFR employs a seismic isolation system to mitigate the earthquake force. The design seismic loading is made more severe than ever since Niigata-ken Chuetsu-oki Earthquake in 2007. The earthquake force loaded on the primary components has to be mitigated more than that of the previous seismic isolation system. We examined the advanced seismic isolation system by optimizing the performance of the previous seismic isolation system considering the natural frequency of the primary components. The advanced seismic isolation system for SFR was adopted laminated rubber bearings which are thicker than that of the previous, as well as oil dampers. The seismic evaluation of nuclear reactor components under applying the advanced seismic isolation system was performed; the performance of the system was confirmed.

Journal Articles

Preliminary evaluation of JSFR achievement level to risk targets

Kurisaka, Kenichi; Okamura, Shigeki*

Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19) (CD-ROM), 10 Pages, 2011/10

Japan Atomic Energy Agency (JAEA) has been developing the Japan Sodium-cooled Fast Reactor (JSFR) in the Fast Reactor Cycle Technology Development (FaCT) Project. Risk targets were set out as part of the safety-related design requirement: i.e., the quantitative safety design requirements on the core damage frequency (CDF) and the containment failure frequency (CFF). This paper describes a preliminary evaluation of achievement level of JSFR to the risk targets at the FaCT project phase-I: JFY2006 to JFY2010. A Level-1 PSA has been implemented preliminarily to evaluate the CDF related to internal initiators in power operation. The calculated CDF became lower than the both requirements on CDF and CFF. For seismic events, the seismic fragility of principal structures and components was evaluated in terms of core damage prevention. This evaluation was based on the seismic response analysis, which considered the seismic isolation effect and the hardening effect of the laminated rubber bearing in the isolation devices. As a result, we confirmed that the principal structures and components of JSFR have sufficient seismic margin. Based on this, we judged the risk target could be achieved against the seismic event.

Journal Articles

Conceptual design study for the demonstration reactor of JSFR, 4; Structural design of reactor vessel

Kawasaki, Nobuchika; Okamura, Shigeki*; Sawa, Naoki*; Sakamoto, Yoshihiko; Negishi, Kazuo

Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19) (CD-ROM), 7 Pages, 2011/10

Japan Sodium-Cooled Fast Reactor adopts an compacted hot reactor vessel concept. From the point of structural designs to ensure both seismic design and elevated temperature design is important. In this study, based on a common conservative seismic loading condition considered with the Niigata-ken Chuetsu-oki Earthquake, seismic evaluations were carried out, the thicknesses of reactor vessels of 750 MWe and 500 MWe output plants were determined. For both plants 50 mm was selected as the thickness, and ensured buckling evaluation margins were more than 2.4. From the point of seismic design, the difference of plant output was negligible. With the condition of 50 mm thickness of reactor vessel, thermal integrities were evaluated. For three plant start-up conditions which were 2.2, 3.2, and 4.3 days, thermal ratcheting and creep-fatigue damage were evaluated. As a result plant start-up period needed more than 3.2 days for both 750 MWe and 500 MWe output plants. Caused thermal stress were the nearly same for both plants, therefore from the point of thermal design, the difference of plant output was negligible.

Journal Articles

Fundamental study on shape dependency of input energy for failure

Minagawa, Keisuke*; Fujita, Satoshi*; Kitamura, Seiji; Okamura, Shigeki

Proceedings of 2009 ASME Pressure Vessels and Piping Division Conference (PVP 2009) (CD-ROM), 7 Pages, 2009/07

76 (Records 1-20 displayed on this page)