Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Geomicrobiological properties of ultra-deep granitic groundwater from the Mizunami Underground Research Laboratory (MIU), Central Japan

Fukuda, Akari*; Hagiwara, Hiroki; Ishimura, Toyoho*; Kozuka, Mariko*; Ioka, Seiichiro*; Amano, Yuki; Tsunogai, Urumu*; Suzuki, Yohei*; Mizuno, Takashi

Microbial Ecology, 60(1), p.214 - 225, 2010/05

 Times Cited Count:29 Percentile:65.76(Ecology)

To better understand the geochemical and microbiological relationships, we characterized granitic groundwater collected from a 1,148 to 1,169 -m deep borehole interval at the Mizunami Underground Research Laboratory site, Japan, in 2005 and 2008. Geochemical analyses of the groundwater samples indicated that major electron acceptors, such as NO$$_{3}$$$$^{-}$$ and SO$$_{4}$$$$^{2-}$$, were not abundant, while dissolved organic carbon (not including organic acids), CH$$_{4}$$ and H$$_{2}$$ were moderately rich. The most common phylotypes were both related to ${it Thauera}$ spp., the cultivated members of which can utilize minor electron donors, such as aromatic and aliphatic hydrocarbons. Geomicrobiological results suggest that deep granitic groundwater has been stably colonized by ${it Thauera}$ spp. probably owing to the limitation of O$$_{2}$$, NO$$_{3}$$$$^{-}$$ and organic acids.

Oral presentation

Collaborative project of JAEA/AIST on hydrochemical study at MIU construction site, 2; Biogeochemical study

Fukuda, Akari*; Hagiwara, Hiroki; Ishimura, Toyoho*; Kozuka, Mariko*; Ito, Kazumasa*; Tsunogai, Urumu*; Suzuki, Yohei*; Mizuno, Takashi

no journal, , 

JAEA and AIST have been conducting collaborative work on hydrochemical study at MIU construction site. The aim of this collaborative study is to establish the methodology for investigation, analysis and evaluation of colloid/organics/microbes study. This paper reports the biogeochemical study. As the result, it is suggested that groundwater taken from deeper part (1150m depth) is relatively oxidized.

Oral presentation

BIO-NANO-GEO Science in deep underground; Approaches at Mizunami Underground Research Laboratory

Suzuki, Yohei*; Fukuda, Akari*; Kozuka, Mariko*; Ishimura, Toyoho*; Tsunogai, Urumu*; Hagiwara, Hiroki; Mizuno, Takashi

no journal, , 

no abstracts in English

Oral presentation

Development the methodology for researching water-rock-microbes interaction in deep underground

Ito, Kazumasa*; Suzuki, Yohei*; Fukuda, Akari*; Kozuka, Mariko*; Mizuno, Takashi; Hagiwara, Hiroki

no journal, , 

no abstracts in English

Oral presentation

Depth variation in microbial community structure and metabolic activities in granitic aquifers at the Mizunami Underground Research Laboratory (MIU), Gifu, Japan

Fukuda, Akari; Kozuka, Mariko*; Aosai, Daisuke; Hagiwara, Hiroki; Mizuno, Takashi; Suzuki, Yohei*

no journal, , 

no abstracts in English

Oral presentation

Hydrogen and carbon isotope geochemistry of freshwater aquifers at the Mizunami Underground Research Laboratory; Implications for ongoing biogeochemical processes in granitic rocks

Konno, Yuta*; Fukuda, Akari; Kozuka, Mariko*; Komatsu, Daisuke*; Tsunogai, Urumu*; Aosai, Daisuke; Mizuno, Takashi; Suzuki, Yohei*

no journal, , 

Our knowledge of biogeochemical processes mediated in those associated with freshwater should be integrated. We collected the groundwater samples from 200 m to 1150 m depths below ground level at Mizunami Underground Research Laboratory located in central Japan. We measured the concentration and both hydrogen and carbon isotopic compositions of dissolved methane, total inorganic carbon (TIC) and molecular hydrogen. The origin of methane could be speculated to be not biogenic CO$$_{2}$$ reduction or acetate fermentation but thermogenic or abiogenic. In contrast, C1/C2+C3 ratios supported biogenic methane production. The 300 m deep samples were enriched in hydrogen and acetate and depleted in sulfate, which is characteristic of acetogenesis. From these results, it is suggested that the production of acetate rather than methane could be dominant biogeochemical processes in the reducing portions of freshwater aquifers in granitic rocks.

Oral presentation

JAEA/AIST collaborative research project; Development and evaluation of investigation methodology to quantify microbial influences on the deep hydrogeochemical properties

Fukuda, Akari; Mizuno, Takashi; Aosai, Daisuke; Hagiwara, Hiroki; Yamamoto, Yuhei; Shingu, Shinya; Ito, Kazumasa*; Suzuki, Yohei*; Kozuka, Mariko*; Konno, Yuta*

no journal, , 

no abstracts in English

Oral presentation

Metabolic rates of subsurface microorganisms in a hydrogeochemically characterized granitic aquifer system at the Mizunami Underground Research Laboratory (MIU) in Japan

Fukuda, Akari; Kozuka, Mariko*; Konno, Yuta*; Aosai, Daisuke; Hagiwara, Hiroki; Mizuno, Takashi; Suzuki, Yohei*

no journal, , 

To quantify microbial influences on the hydrogeochemistry of a 99-1169-m deep granitic aquifer system, we developed methodology for sensitive measurements of a variety of aerobic and anaerobic metabolic activities. Briefly, microbial cells were ca. 30-fold concentrated in groundwater by filtration to incubate with electron acceptors. Aerobic respiration was more than 400 umol/L/year at depths of 99 and 175 m and decreased with increasing depth down to 36 umol/L/year at a depth of 1169 m. Nitrate respiration increased from 99 to 308 m (4.3 to 37 umol/L/year) and decreased with increasing depth down to 0.20 umol/L/year. Sulfate respiration ranging from 1.4 to 3.2 umol/L/year was detected only at depths above 200 m. The depletion of O$$_{2}$$ and NO$$_{3}$$$$^{-}$$ and a gradual decrease in sulfate with increasing depth in the granitic aquifer could be attributed to microbial respirations at rates clarified in this study. Our research was partially founded by Nuclear and Industry Safety Agency.

Oral presentation

JAEA/AIST colaborative research project; Development and evaluation of investigation methodology to quantify microbial influences on the deep hydrogeochemical properties

Fukuda, Akari; Mizuno, Takashi; Aosai, Daisuke; Hagiwara, Hiroki; Yamamoto, Yuhei; Shingu, Shinya; Takeno, Naoto*; Suzuki, Yohei*; Konno, Yuta*; Kozuka, Mariko*

no journal, , 

no abstracts in English

Oral presentation

Biogeochemical investigation of deep granitic groundwater from Mizunami Underground Research Laboratory (MIU)

Fukuda, Akari; Kozuka, Mariko*; Konno, Yuta*; Aosai, Daisuke; Shingu, Shinya; Hagiwara, Hiroki; Mizuno, Takashi; Suzuki, Yohei*

no journal, , 

no abstracts in English

Oral presentation

Unveiling key players in the geological disposal environment

Suzuki, Yohei*; Fukuda, Akari; Konno, Yuta*; Kozuka, Mariko*; Hagiwara, Hiroki; Aosai, Daisuke; Takeno, Naoto*; Mizuno, Takashi

no journal, , 

11 (Records 1-11 displayed on this page)
  • 1