Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 108

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Sintering behavior analysis of compacted dry recycled U$$_{0.7}$$Pu$$_{0.3}$$O$$_{2}$$ powder using master sintering curve theory

Nakamichi, Shinya; Sunaoshi, Takeo*; Hirooka, Shun; Vauchy, R.; Murakami, Tatsutoshi

Journal of Nuclear Materials, 595, p.155072_1 - 155072_11, 2024/07

Journal Articles

High temperature nanoindentation of (U,Ce)O$$_{2}$$ compounds

Frazer, D.*; Saleh, T. A.*; Matsumoto, Taku; Hirooka, Shun; Kato, Masato; McClellan, K.*; White, J. T.*

Nuclear Engineering and Design, 423, p.113136_1 - 113136_7, 2024/07

Nanoindentation based techniques can be employed on minute volumes of material to measure mechanical properties, including Young's modulus, hardness, and creep stress exponents. In this study, (U,Ce)O$$_{2}$$ solid solutions samples are used to develop elevated temperature nanoindentation and nanoindentation creep testing methods for use on mixed oxide fuels. Nanoindentation testing was performed on 3 separate (Ux-1,Cex)O$$_{2}$$ compounds ranging from x equals 0.1 to 0.3 at up to 800 $$^{circ}$$C: their Young's modulus, hardness, and creep stress exponents were evaluated. The Young's modulus decreases in the expected linear manner while the hardness decreases in the expected exponential manner. The nanoindentation creep experiments at 800 $$^{circ}$$C give stress exponent values, n=4.7-6.9, that suggests dislocation motion as the deformation mechanism.

Journal Articles

A Science-based mixed oxide property model for developing advanced oxide nuclear fuels

Kato, Masato; Oki, Takumi; Watanabe, Masashi; Hirooka, Shun; Vauchy, R.; Ozawa, Takayuki; Uwaba, Tomoyuki; Ikusawa, Yoshihisa; Nakamura, Hiroki; Machida, Masahiko

Journal of the American Ceramic Society, 107(5), p.2998 - 3011, 2024/05

 Times Cited Count:0 Percentile:0.01(Materials Science, Ceramics)

Journal Articles

Thermal conductivity measurement of uranium-plutonium mixed oxide doped with Nd/Sm as simulated fission products

Horii, Yuta; Hirooka, Shun; Uno, Hiroki*; Ogasawara, Masahiro*; Tamura, Tetsuya*; Yamada, Tadahisa*; Furusawa, Naoya*; Murakami, Tatsutoshi; Kato, Masato

Journal of Nuclear Materials, 588, p.154799_1 - 154799_20, 2024/01

 Times Cited Count:1 Percentile:72.91(Materials Science, Multidisciplinary)

The thermal conductivities of near-stoichiometric (U,Pu,Am)O$$_{2}$$ doped with Nd$$_{2}$$O$$_{3}$$/Sm$$_{2}$$O$$_{3}$$, which is major fission product (FP) generated by a uranium-plutonium mixed oxides (MOX) fuel irradiation, as simulated fission products are evaluated at 1073-1673 K. The thermal conductivities are calculated from the thermal diffusivities that are measured using the laser flash method. To evaluate the thermal conductivity from a homogeneity viewpoint of Nd/Sm cations in MOX, the specimens with different homogeneity of Nd/Sm are prepared using two kinds of powder made by ball-mill and fusion methods. A homogeneous Nd/Sm distribution decreases the thermal conductivity of MOX with increasing Nd/Sm content, whereas heterogeneous Nd/Sm has no influence. The effect of Nd/Sm on the thermal conductivity is studied using the classical phonon transport model (A+BT)$$^{-1}$$. The dependences of the coefficients A and B on the Nd/Sm content (C$$_{Nd}$$ and C$$_{Sm}$$, respectively) are evaluated as: A(mK/W)=1.70 $$times$$ 10$$^{-2}$$ + 0.93C$$_{Nd}$$ + 1.20C$$_{Sm}$$, B(m/W)=2.39 $$times$$ 10$$^{-4}$$.

Journal Articles

Uranium-plutonium-americium cation interdiffusion in polycrystalline (U,Pu,Am)O$$_{2 pm x}$$ mixed oxides

Vauchy, R.; Matsumoto, Taku; Hirooka, Shun; Uno, Hiroki*; Tamura, Tetsuya*; Arima, Tatsumi*; Inagaki, Yaohiro*; Idemitsu, Kazuya*; Nakamura, Hiroki; Machida, Masahiko; et al.

Journal of Nuclear Materials, 588, p.154786_1 - 154786_13, 2024/01

 Times Cited Count:1 Percentile:72.91(Materials Science, Multidisciplinary)

Journal Articles

Ionic radii in fluorites

Vauchy, R.; Hirooka, Shun; Murakami, Tatsutoshi

Materialia, 32, p.101934_1 - 101934_12, 2023/12

Journal Articles

Ionic radii in halites

Vauchy, R.; Hirooka, Shun; Murakami, Tatsutoshi

Materialia, 32, p.101943_1 - 101943_8, 2023/12

Journal Articles

Sintering and microstructural behaviors of mechanically blended Nd/Sm-doped MOX

Hirooka, Shun; Horii, Yuta; Sunaoshi, Takeo*; Uno, Hiroki*; Yamada, Tadahisa*; Vauchy, R.; Hayashizaki, Kohei; Nakamichi, Shinya; Murakami, Tatsutoshi; Kato, Masato

Journal of Nuclear Science and Technology, 60(11), p.1313 - 1323, 2023/11

 Times Cited Count:3 Percentile:95.99(Nuclear Science & Technology)

Additive MOX pellets are fabricated by a conventional dry powder metallurgy method. Nd$$_{2}$$O$$_{3}$$ and Sm$$_{2}$$O$$_{3}$$ are chosen as the additive materials to simulate the corresponding soluble fission products dispersed in MOX. Shrinkage curves of the MOX pellets are obtained by dilatometry, which reveal that the sintering temperature is shifted toward a value higher than that of the respective regular MOX. The additives, however, promote grain growth and densification, which can be explained by the effect of oxidized uranium cations covering to a pentavalent state. Ceramography reveals large agglomerates after sintering, and Electron Probe Micro-Analysis confirms that inhomogeneous elemental distribution, whereas XRD reveals a single face-centered cubic phase. Finally, by grinding and re-sintering the specimens, the cation distribution homogeneity is significantly improved, which can simulate spent nuclear fuels with soluble fission products.

Journal Articles

Lattice parameters of fluorite-structured uranium-americium mixed oxides

Vauchy, R.; Hirooka, Shun; Watanabe, Masashi; Yokoyama, Keisuke; Murakami, Tatsutoshi

Journal of Nuclear Materials, 584, p.154576_1 - 154576_11, 2023/10

 Times Cited Count:2 Percentile:90.12(Materials Science, Multidisciplinary)

Journal Articles

Oxygen potential of neodymium-doped U$$_{0.817}$$Pu$$_{0.180}$$Am$$_{0.003}$$O$$_{2 pm x}$$ uranium-plutonium-americium mixed oxides at 1573, 1773, and 1873 K

Vauchy, R.; Sunaoshi, Takeo*; Hirooka, Shun; Nakamichi, Shinya; Murakami, Tatsutoshi; Kato, Masato

Journal of Nuclear Materials, 580, p.154416_1 - 154416_11, 2023/07

 Times Cited Count:4 Percentile:98.08(Materials Science, Multidisciplinary)

Journal Articles

Machine learning sintering density prediction model for MOX fuel pellet

Kato, Masato; Nakamichi, Shinya; Hirooka, Shun; Watanabe, Masashi; Murakami, Tatsutoshi; Ishii, Katsunori

Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 22(2), p.51 - 58, 2023/04

Uranium and Plutonium mixed oxide (MOX) pellets used as fast reactor fuels have been produced from several raw materials by mechanical blending method through processes of ball milling, additive blending, granulation, pressing, sintering and so on. It is essential to control the pellet density which is one of the important fuel specifications, but it is difficult to understand relationships among many parameters in the production. Database for MOX production was prepared from production results in Japan, and input data of eighteen types were chosen from production process and made a data set. Machine learning model to predict sintered density of MOX pellet was derived by gradient boosting regressor, and represented the measured sintered density with coefficient of determination of R$$^{2}$$=0.996

Journal Articles

Toward long-term storage of nuclear materials in MOX fuels fabrication facility

Hirooka, Shun; Nakamichi, Shinya; Matsumoto, Taku; Tsuchimochi, Ryota; Murakami, Tatsutoshi

Frontiers in Nuclear Engineering (Internet), 2, p.1119567_1 - 1119567_7, 2023/03

Storage of plutonium (Pu)-containing materials requires extremely strict attention in terms of physical safety and material accounting. Despite the emphasized importance of storage management, only a few reports are available in the public, e.g., experience in PuO$$_{2}$$ storage in the UK and safety standards in the storage of Pu-containing materials in the US. Japan also stores more U-Pu mixed oxide (MOX) mostly in powder form. Adopting an appropriate storage management is necessary depending on the characteristics of MOX items such as raw powder obtained by reprocessing of spent Light Water Reactor fuels, research and development on the remains of fuel fabrication, which can contain organic materials, and dry-recycled powder during fuel fabrication. Stagnation in fuel fabrications and experience in degradation of MOX containers during extended period of storage have led to the review of the storage method in the Plutonium Fuel Development Center in Japan Atomic Energy Agency. The present work discusses the various nuclear materials, storage methods, experience in degradation of containers that occur during storage, and strategies for future long-term storage.

Journal Articles

Breaking the hard-sphere model with fluorite and antifluorite solid solutions

Vauchy, R.; Hirooka, Shun; Watanabe, Masashi; Kato, Masato

Scientific Reports (Internet), 13, p.2217_1 - 2217_8, 2023/02

 Times Cited Count:6 Percentile:93.59(Multidisciplinary Sciences)

Journal Articles

Liquid phase sintering of alumina-silica co-doped cerium dioxide CeO$$_{2}$$ ceramics

Vauchy, R.; Hirooka, Shun; Watanabe, Masashi; Yokoyama, Keisuke; Sunaoshi, Takeo*; Yamada, Tadahisa*; Nakamichi, Shinya; Murakami, Tatsutoshi

Ceramics International, 49(2), p.3058 - 3065, 2023/01

 Times Cited Count:8 Percentile:75.06(Materials Science, Ceramics)

Journal Articles

Oxygen diffusion in the fluorite-type oxides CeO$$_{2}$$, ThO$$_{2}$$, UO$$_{2}$$, PuO$$_{2}$$, and (U, Pu)O$$_{2}$$

Kato, Masato; Watanabe, Masashi; Hirooka, Shun; Vauchy, R.

Frontiers in Nuclear Engineering (Internet), 1, p.1081473_1 - 1081473_10, 2023/01

Journal Articles

Cation interdiffusion in uranium-plutonium mixed oxide fuels; Where are we now?

Vauchy, R.; Hirooka, Shun; Matsumoto, Taku; Kato, Masato

Frontiers in Nuclear Engineering (Internet), 1, p.1060218_1 - 1060218_18, 2022/12

Journal Articles

Materials science and fuel technologies of uranium and plutonium mixed oxide

Kato, Masato; Machida, Masahiko; Hirooka, Shun; Nakamichi, Shinya; Ikusawa, Yoshihisa; Nakamura, Hiroki; Kobayashi, Keita; Ozawa, Takayuki; Maeda, Koji; Sasaki, Shinji; et al.

Materials Science and Fuel Technologies of Uranium and Plutonium mixed Oxide, 171 Pages, 2022/10

Innovative and advanced nuclear reactors using plutonium fuel has been developed in each country. In order to develop a new nuclear fuel, irradiation tests are indispensable, and it is necessary to demonstrate the performance and safety of nuclear fuels. If we can develop a technology that accurately simulates irradiation behavior as a technology that complements the irradiation test, the cost, time, and labor involved in nuclear fuel research and development will be greatly reduced. And safety and reliability can be significantly improved through simulation of nuclear fuel irradiation behavior. In order to evaluate the performance of nuclear fuel, it is necessary to know the physical and chemical properties of the fuel at high temperatures. And it is indispensable to develop a behavior model that describes various phenomena that occur during irradiation. In previous research and development, empirical methods with fitting parameters have been used in many parts of model development. However, empirical techniques can give very different results in areas where there is no data. Therefore, the purpose of this study is to construct a scientific descriptive model that can extrapolate the basic characteristics of fuel to the composition and temperature, and to develop an irradiation behavior analysis code to which the model is applied.

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Recent studies on fuel properties and irradiation behaviors of Am/Np-bearing MOX

Hirooka, Shun; Yokoyama, Keisuke; Kato, Masato

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 8 Pages, 2022/04

Property studies on Am/Np-bearing MOX were carried out and how the properties influences on the irradiation behaviors was discussed. Both Am and Np inclusions increase the oxygen potential of MOX. Inter-diffusion coefficients obtained by using diffusion couple technique indicate that the inter-diffusion coefficient is larger in the order of U-Am, U-Pu and U-Np. Also, the inter-diffusion coefficients were evaluated to be larger at the O/M = 2 than those of O/M $$<$$ 2 by several orders. The increase of oxygen potential with Am/Np leads to higher vapor pressure of UO$$_{3}$$ and the acceleration of the pore migration along temperature gradient during irradiation. The redistributions of actinide elements were also considered with the relationship of the pore migration and diffusion in solid state. Thus, the obtained inter-diffusion coefficients directly influence on the redistribution rate. The obtained properties were modelled and can be installed in a fuel irradiation simulation code.

Journal Articles

Advanced reactor experiments for sodium fast reactor fuels (ARES) project; Transient irradiation experiments for metallic and MOX fuels

Jensen, C. B.*; Wachs, D. M.*; Woolstenhulme, N. E.*; Ozawa, Takayuki; Hirooka, Shun; Kato, Masato

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 9 Pages, 2022/04

108 (Records 1-20 displayed on this page)