Refine your search:     
Report No.
 - 
Search Results: Records 1-16 displayed on this page of 16
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Non-destructive examination of jacket sections for ITER central solenoid conductors

Takahashi, Yoshikazu; Suwa, Tomone; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 25(3), p.4200904_1 - 4200904_4, 2015/06

 Times Cited Count:3 Percentile:20.23(Engineering, Electrical & Electronic)

The Japan Atomic Energy Agency (JAEA) is responsible for procuring all amounts of Central Solenoid (CS) Conductors for ITER, including CS jacket sections. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A total of 576 Nb$$_{3}$$Sn strands and 288 copper strands are cabled around the central spiral. The maximum operating current is 40 kA at magnetic field of 13 T. CS jacket section is circular in square type tube made of JK2LB, which is high manganese stainless steel with boron added. Unit length of jacket sections is 7 m and 6,300 sections will be manufactured and inspected. Outer/inner dimension and weight are 51.3/35.3 mm and around 90 kg, respectively. Eddy Current Test (ECT) and Phased Array Ultrasonic Test (PAUT) were developed for non-destructive examination. The defects on inner and outer surfaces can be detected by ECT. The defects inside jacket section can be detected by PAUT. These technology and the inspected results are reported in this paper.

Journal Articles

Establishment of production process of JK2LB jacket section for ITER CS

Ozeki, Hidemasa; Hamada, Kazuya; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Kawano, Katsumi; Oshikiri, Masayuki; Saito, Toru; Teshima, Osamu*; Matsunami, Masahiro*

IEEE Transactions on Applied Superconductivity, 24(3), p.4800604_1 - 4800604_4, 2014/06

 Times Cited Count:16 Percentile:62.24(Engineering, Electrical & Electronic)

Journal Articles

Cable twist pitch variation in Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Nabara, Yoshihiro; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Hamada, Kazuya; Matsui, Kunihiro; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 23(3), p.4801504_1 - 4801504_4, 2013/06

 Times Cited Count:11 Percentile:50.58(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) is the first to start the mass production of the TF conductors in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The height and width of the TF coils are 14 m and 9 m, respectively. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A circular multistage superconducting cable is inserted into a circular stainless steel jacket with a thickness of 2 mm. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and the cable is inserted into a round-in-round stainless steel jacket. It was observed that the cabling pitch of the destructive sample is longer than the original pitch at cabling. The JAEA carried out the tensile tests of the cable and the measurement of the cable rotation during the insertion to investigate the cause of the elongation. The cause of elongation was clarified and the results will be described in this paper.

Journal Articles

Effect of specimen shape on the elongation of 316LN jacket used in the ITER toroidal field coil

Hamada, Kazuya; Kawano, Katsumi; Saito, Toru; Iguchi, Masahide; Nakajima, Hideo; Teshima, Osamu*; Matsuda, Hidemitsu*

AIP Conference Proceedings 1435, p.55 - 62, 2012/06

 Times Cited Count:3 Percentile:73.67(Physics, Applied)

The TF coil conductor was composed of 900 Nb$$_{3}$$Sn superconducting strands and 522 Cu strands protected by circular sheath tube (jacket) with the outer diameter of 43.7 mm. The jacket section is a seamless tube made of modified 316LN. JAEA tested different types of tensile specimen (Japanese Industrial Standards (JIS) type and ASTM type) cut from jacket. ASTM type specimen has longer and wider reduced section than those of JIS type specimen. Elongation of as received condition is not dependent on specimen shape. But after cold work and aging, the elongation is deteriorated due to a sensitization and scattering of elongation is larger than that of as received condition. Fracture mode of aged jacket is "cup and cone fracture", which have a mixture of inter granular at center area and trans-granular factures in circumference area. It is considered that initiation of fracture is more sensitive on test specimen shape with low ductility.

Journal Articles

Mass production of Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4801904_1 - 4801904_4, 2012/06

 Times Cited Count:7 Percentile:41.4(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency is the first to start the mass production of the TF conductors in Phase IV in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The conductor is cable-in-conduit conductor with a central spiral. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and then wrapped with stainless steel tape whose thickness is 0.1 mm. Approximately 60 tons of Nb$$_{3}$$Sn strands were manufactured by the two suppliers in December 2010. This amount corresponds to approximately 55% of the total contribution from Japan. Approximately 30% of the total contribution from Japan was completed as of February 2011. JAEA is manufacturing one conductor per month under a contract with two Japanese companies for strands, one company for cabling and one company for jacketing. This paper summarizes the technical developments including a high-level quality assurance. This progress is a significant step in the construction of the ITER machine.

Journal Articles

Development of manufacturing technologies for ITER Toroidal Field coil conductors

Hamada, Kazuya; Takahashi, Yoshikazu; Nabara, Yoshihiro; Kawano, Katsumi; Ebisawa, Noboru; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Saito, Toru*; Nakajima, Hideo; Matsuda, Hidemitsu*; et al.

Teion Kogaku, 47(3), p.153 - 159, 2012/03

The Japan Atomic Energy Agency (JAEA) has the responsibility to procure 25% of the ITER Toroidal Field coil conductors as the Japanese Domestic Agency (JADA) in the ITER project. The TF conductor is a circular shaped, cable-in-conduit conductor, composed of a cable and a stainless steel conduit (jacket). The outer diameter and maximum length of the TF conductor are 43.7 mm and 760 m, respectively. JAEA has constructed newly conductor manufacturing facility. Prior to starting conductor, JAEA manufactured a 760-m long Cu dummy conductor as process qualification of dummy cable, the jacket sections and fabrication procedures, such as welding, cable insertion, compaction and spooling. Following qualification of all manufacturing processes, JAEA has started to fabricate superconducting conductors for the TF coils.

Journal Articles

Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

Yogo, Akifumi; Sato, Katsutoshi; Nishikino, Masaharu; Mori, Michiaki; Teshima, Teruki*; Numasaki, Hodaka*; Murakami, Masao*; Demizu, Yusuke*; Akagi, Takashi*; Nagayama, Shinichi*; et al.

Applied Physics Letters, 94(18), p.181502_1 - 181502_3, 2009/05

 Times Cited Count:110 Percentile:94.75(Physics, Applied)

Journal Articles

Development of conduits for the ITER central solenoid conductor

Hamada, Kazuya; Nakajima, Hideo; Kawano, Katsumi; Takano, Katsutoshi; Tsutsumi, Fumiaki; Okuno, Kiyoshi; Fujitsuna, Nobuyuki*; Teshima, Osamu*

Teion Kogaku, 43(6), p.244 - 251, 2008/06

Japan Atomic Energy Agency has developed JK2LB conduit for the Nb$$_{3}$$Sn conductor of the ITER Central Solenoid. Mechanical requirements for the CS conductor conduit are 0.2% yield strength of more than 900 MPa and fracture toughness K $$_{IC}$$(J) of more than 130 MPa$$sqrt{m}$$ after a compaction and aging heat treatment (650 $$^{circ}$$C, 240 hours). In the previous work, aged JK2LB conduit has shown high strength and fracture toughness enough to satisfy the requirements. As a next step, work was performed to determine specification of the JK2LB conduit taking account of cold work including compaction and winding, and to simplify its fabrication process. To simulate the cold work effect and aging, mechanical tests were performed at 4.2 K on laboratory scale (20-30kg) ingot samples. It was found that the sum of carbon and nitrogen content should be in a range from 0.11% to 0.18% to achieve the ITER mechanical requirements. To obtain a grain size of conduit as well as that of small ingot sample, applicable solution heat treatment temperature and holding time were studied. In order to simplify the billet production process, we confirmed internal metallurgical qualities of JK2LB cast ingot. Since significant segregation was not observed, we could exclude an electroslag remelting process. Based on above achievements, full size JK2LB conduits were fabricated and satisfied the ITER mechanical requirements.

Journal Articles

Development of jacketing technologies for ITER CS and TF conductor

Hamada, Kazuya; Nakajima, Hideo; Matsui, Kunihiro; Kawano, Katsumi; Takano, Katsutoshi; Tsutsumi, Fumiaki; Okuno, Kiyoshi; Teshima, Osamu*; Soejima, Koji*

AIP Conference Proceedings 986, p.76 - 83, 2008/03

The ITER Toroidal Field (TF) coil and Central Solenoid (CS) use Nb$$_{3}$$Sn cable-in-conduit conductor. Conductor fabrication process are as follows; (1) Fabrication of jacket. (2) Butt welding of jacket to make a long tube (CS: 880 m, TF: 760 m) and insertion of superconducting cable into jacket. (3) Compaction of jacket. (4) Winding for transportation. JAEA has developed jacketing technologies in the cooperation with industries. Major achievements are as follows; (1) Full scale TF and CS jackets were fabricated using low carbon SUS316LN and boron added and high manganese stainless steel (JK2LB), respectively. The jackets satisfied ITER mechanical and dimensional requirement. (2) Butt welding condition was studied to obtain good internal surface condition of welded joint. (3) Compaction machine was constructed. As results of compaction test of TF and CS jacket, compacted jacket dimensions satisfied ITER requirement. Therefore, JAEA demonstrated jacketing technologies for ITER conductor.

Oral presentation

Radiobiological effects by the irradiation of laser-accelerated proton beams

Yogo, Akifumi; Nishiuchi, Mamiko; Sakaki, Hironao; Hori, Toshihiko; Sato, Katsutoshi; Nishikino, Masaharu; Maeda, Takuya; Mori, Michiaki; Ogura, Koichi; Orimo, Satoshi; et al.

no journal, , 

no abstracts in English

Oral presentation

Measurements of RBE for DNA double-strand break induction by laser-accelerated proton beams

Yogo, Akifumi; Sato, Katsutoshi; Nishikino, Masaharu; Maeda, Takuya; Nishiuchi, Mamiko; Sakaki, Hironao; Hori, Toshihiko; Mori, Michiaki; Ogura, Koichi; Orimo, Satoshi; et al.

no journal, , 

no abstracts in English

Oral presentation

Breeding of a new sake yeast using ion beams and its test brewing, 3

Masubuchi, Takashi*; Kamiyama, Osamu*; Sato, Katsuya; Hase, Yoshihiro; Tejima, Kohei; Narumi, Issei; Onodera, Takefumi

no journal, , 

no abstracts in English

Oral presentation

Preparation for procurement of ITER CS conductor jacket

Ozeki, Hidemasa; Hamada, Kazuya; Nunoya, Yoshihiko; Kawano, Katsumi; Takahashi, Yoshikazu; Oshikiri, Masayuki; Saito, Toru; Matsunami, Masahiro*; Teshima, Osamu*

no journal, , 

no abstracts in English

Oral presentation

Mass production technology of ITER conductors; Investigation of twist pitch variation

Takahashi, Yoshikazu; Nabara, Yoshihiro; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Uno, Yasuhiro; Hamada, Kazuya; Shibutani, Kazuyuki*; et al.

no journal, , 

In the ITER project, Japan Atomic Energy Agency (JAEA) is the first to start the mass production of the TF conductors in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The height and width of the TF coils are 14 m and 9 m, respectively. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A circular multistage superconducting cable is inserted into a circular stainless steel jacket with a thickness of 2 mm. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and the cable is inserted into a round-in-round stainless steel jacket. It was observed that the cabling pitch of the destructive sample is longer than the original pitch at cabling. The JAEA carried out the tensile tests of the cable and the measurement of the cable rotation during the insertion to investigate the cause of the elongation. The cause of elongation was clarified and the results will be described in this paper.

Oral presentation

Progress of procurement of ITER central solenoid jacket

Ozeki, Hidemasa; Hamada, Kazuya; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Kawano, Katsumi; Oshikiri, Masayuki; Saito, Toru; Isono, Takaaki; Teshima, Osamu*; Matsunami, Masahiro*

no journal, , 

no abstracts in English

Oral presentation

Non-destructive examination of jacket sections for ITER central solenoid (CS) coil

Takahashi, Yoshikazu; Suwa, Tomone; Nabara, Yoshihiro; Ozeki, Hidemasa; Nunoya, Yoshihiko; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Takamura, Jun; Shibutani, Kazuyuki*; Chuheishi, Shinji; et al.

no journal, , 

The Japan Atomic Energy Agency (JAEA) is responsible for procuring all amounts of Central Solenoid (CS) Conductors for ITER, including CS jacket sections. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A total of 576 Nb$$_{3}$$Sn strands and 288 copper strands are cabled around the central spiral. The maximum operating current is 40 kA at magnetic field of 13 T. CS jacket section is circular in square type tube made of JK2LB, which is high manganese stainless steel with boron added. Unit length of jacket sections is 7 m and 6,300 sections will be manufactured and inspected. Outer/inner dimension and weight are 51.3/35.3 mm and around 90 kg, respectively. Eddy Current Test (ECT) and Phased Array Ultrasonic Test (PAUT) were developed for non-destructive examination. The defects on inner and outer surfaces can be detected by ECT. The defects inside jacket section can be detected by PAUT. These technology and the inspected results are reported in this paper.

16 (Records 1-16 displayed on this page)
  • 1