Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 56

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

HFB-1 borehole survey data collection

Miyakawa, Kazuya; Hayano, Akira; Sato, Naomi; Nakata, Kotaro*; Hasegawa, Takuma*

JAEA-Data/Code 2023-009, 103 Pages, 2023/09

JAEA-Data-Code-2023-009.pdf:9.29MB
JAEA-Data-Code-2023-009-appendix1(DVD-ROM).zip:271.51MB
JAEA-Data-Code-2023-009-appendix2(DVD-ROM).zip:883.78MB
JAEA-Data-Code-2023-009-appendix3(DVD-ROM).zip:10.29MB

This borehole investigation was carried out to confirm the validity of the distribution of low flow areas deep underground estimated based on the geophysical survey in FY 2020, as a part of an R&D supporting program titled "Research and development on Groundwater Flow Evaluation Technology in Bedrock" under contract to the Ministry of Economy, Trade and Industry (2021, 2022 FY, Grant Number: JPJ007597). The borehole name is Horonobe Fossil seawater Boring-1 and is referred to as HFB-1 borehole. HFB-1 is a vertical borehole drilled adjacent to the Horonobe Underground Research Laboratory (URL), which was drilled from the surface to a depth of 200 m in FY2021 and from a depth of 200 m to 500 m in FY2022. This report summarizes information related to the drilling of HFB-1 and various data (rock core description, geophysical logging, chemical analysis, etc.) obtained from the borehole investigation.

Journal Articles

Current status of geological disposal by "all-Japan" activities, 2; Site characterization technology for geological disposal

Saegusa, Hiromitsu*; Matsuoka, Toshiyuki*; Niwa, Masakazu; Sasao, Eiji; Hayano, Akira

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 64(1), p.46 - 50, 2022/01

This paper is a review article to introduce the concept of the site selection for geological disposal in geological environment of Japanese Islands, and the current status of related research and development.

JAEA Reports

Integration of the geological survey data obtained for shaft and gallery walls from the surface to a depth of 380m in the Horonobe Underground Research Laboratory Project

Sakai, Toshihiro; Hayano, Akira

JAEA-Data/Code 2021-010, 243 Pages, 2021/10

JAEA-Data-Code-2021-010.pdf:62.15MB
JAEA-Data-Code-2021-010-appendix1(CD-ROM).zip:95.55MB
JAEA-Data-Code-2021-010-appendix2(CD-ROM).zip:152.69MB
JAEA-Data-Code-2021-010-appendix3(CD-ROM).zip:25.48MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, "Geoscientific Research" and "R&D on Geological Disposal", and proceeds in three overlapping phases, "Phase I: Surface-based investigation", "Phase II: Construction" and "Phase III: Operation". The geological survey has been carried out at the shafts and the galleries in the Phase II. The geological survey was carried out during the excavation cycle, and the data were obtained for each an excavation cross section. This report shows the data which the individual geological data were integrated for the geological survey at the shafts and the galleries from the surface to a depth of 380m.

JAEA Reports

Synthesis report on the R&D for the Horonobe Underground Research Laboratory; Project carried out during fiscal years 2015-2019

Nakayama, Masashi; Saiga, Atsushi; Kimura, Shun; Mochizuki, Akihito; Aoyagi, Kazuhei; Ono, Hirokazu; Miyakawa, Kazuya; Takeda, Masaki; Hayano, Akira; Matsuoka, Toshiyuki; et al.

JAEA-Research 2019-013, 276 Pages, 2020/03

JAEA-Research-2019-013.pdf:18.72MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The present report summarizes the research and development activities of these 3 important issues carried out during 3rd Medium to Long-term Research Phase.

Journal Articles

Estimation of planes of a rock mass in a gallery wall from point cloud data based on MD PSO

Matsuura, Yuto*; Hayano, Akira; Itakura, Kenichi*; Suzuki, Yukinori*

Applied Soft Computing, 84, p.105737_1 - 105737_9, 2019/11

 Times Cited Count:2 Percentile:14.82(Computer Science, Artificial Intelligence)

LiDAR (laser imaging detection and ranging) has been developed to obtain a high-resolution point cloud data indicating the detailed 3D shapes of an object. To identify discontinuities in a rock mass of a tunnel gallery wall, it is necessary to approximate the rock mass surface with small planes. Normal vectors of the planes are important to identify discontinuities. We developed an algorithm for estimation of planes based on multi-dimensional particle swarm optimization (MD PSO) from point cloud data. Point cloud data were segmented into bounding boxes and grouped into clusters by MD PSO. Planes were estimated using the least squares method for point cloud data in the respective clusters. The newly developed MD PSO algorithm was evaluated using point cloud data obtained from a gallery wall. Evaluation was carried out in comparison with the previous developed variable-box segmentation (VBS) algorithm. The MD PSO-based algorithm showed a 7% higher accuracy than that of the VBS algorithm.

Journal Articles

Fracture characterization and rock mass behavior induced by blasting and mechanical excavation of shafts in Horonobe Underground Research Laboratory

Aoyagi, Kazuhei; Tokiwa, Tetsuya*; Sato, Toshinori; Hayano, Akira

Proceedings of 2019 Rock Dynamics Summit in Okinawa (USB Flash Drive), p.682 - 687, 2019/05

In high-level radioactive disposal projects, it is important to investigate the extent of the excavation damaged zone (EDZ) for safety assessment because EDZ can provide a migration pathway for radionuclides from the facility. To investigate the quantitative differences between EDZs formed because of blasting and mechanical excavation, we studied the characteristics of fractures induced by excavation based on fracture mapping performed during shaft sinking (V- and E-Shafts). As a result, it was found that blasting excavation can lead to the formation of a large number of newly created fractures (EDZ fractures) compared with mechanical excavation. In addition, the seismic velocity (P-wave velocity) measured during blasting excavation (E-Shaft) was lower than that measured during mechanical excavation (V-Shaft). Furthermore, we found that the support pattern that reinforces forward rocks to be appropriate for limiting damage to the shaft wall.

Journal Articles

Discrete fracture network model for faults distributed in Neogene massive siliceous mudstones

Hayano, Akira; Ishii, Eiichi

Shigen, Sozai Koenshu (Internet), 5(1), 9 Pages, 2018/03

no abstracts in English

Journal Articles

Variable-box segmentation of a three-dimensional point cloud for automatic estimation of discontinuities in rock mass

Matsukawa, Shun*; Itakura, Kenichi*; Hayano, Akira; Suzuki, Yukinori*

Journal of MMIJ, 133(11), p.256 - 263, 2017/11

LIDAR detects a rock mass surface configurations as a point cloud. DiAna (Discontinuity Analysis) is a Matlab tool which was developed for geo-structural analysis of rock mass discontinuities. DiAna segments a point cloud into bounding boxes to estimate the surface of a rock mass. However, an expert's skills necessary to determine the appropriate size of the bounding boxes for DiAna. We developed the VBS (Variable-Box Segmentation) algorithm to determine the appropriate box size depending on the location of the point cloud and to estimate the surface of a rock mass. The performance of the VBS algorithms was evaluated by comparison with the DiAna algorithm. The results of comparison showed that the VBS algorithm estimated planes more accurately for the reference planes than the DiAna algorithm. Therefore, the VBS algorithm determines appropriate box sizes automatically depending on the location of the point cloud and estimates the surface appropriately.

Journal Articles

Applicability of the three-dimensional laser scanning to the fracture mapping on a gallery wall

Hayano, Akira; Itakura, Kenichi*

Journal of MMIJ, 133(4), p.76 - 86, 2017/04

no abstracts in English

JAEA Reports

Horonobe Underground Research Laboratory Project; Synthesis of Phase II (Construction Phase) investigations to a depth of 350m

Sato, Toshinori; Sasamoto, Hiroshi; Ishii, Eiichi; Matsuoka, Toshiyuki; Hayano, Akira; Miyakawa, Kazuya; Fujita, Tomoo*; Tanai, Kenji; Nakayama, Masashi; Takeda, Masaki; et al.

JAEA-Research 2016-025, 313 Pages, 2017/03

JAEA-Research-2016-025.pdf:45.1MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. This report summarizes the results of the Phase II investigations carried out from April 2005 to June 2014 to a depth of 350m. Integration of work from different disciplines into a "geosynthesis" ensures that the Phase II goals have been successfully achieved and identifies key issues that need to made to be addressed in the Phase II investigations Efforts are made to summarize as many lessons learnt from the Phase II investigations and other technical achievements as possible to form a "knowledge base" that will reinforce the technical basis for both implementation and the formulation of safety regulations.

Journal Articles

Relationship between faults oriented parallel and oblique to bedding in Neogene massive siliceous mudstones at the Horonobe Underground Research Laboratory, Japan

Hayano, Akira; Ishii, Eiichi

IOP Conference Series; Earth and Environmental Science, 44, p.022004_1 - 022004_8, 2016/10

 Times Cited Count:3 Percentile:69.26(Geosciences, Multidisciplinary)

This study investigates the mechanical relationship between bedding-parallel and bedding-oblique faults in a Neogene massive siliceous mudstone at the site of the Horonobe Underground Research Laboratory (URL) in Hokkaido, Japan, on the basis of observations of drillcore recovered from pilot boreholes and fracture mapping on shaft and gallery walls. The distribution of the bedding-parallel faults at 350 m depth in the Horonobe URL indicates that these faults are spread over at least several tens of meters in parallel along a bedding plane. The observation that the bedding-oblique fault displaces the Last MM fault is consistent with the previous interpretation that the bedding-oblique faults formed after the bedding-parallel faults. In addition, the bedding-parallel faults terminate near the MM and S1 faults, indicating that the bedding-parallel faults with visible fault gouge act to terminate the propagation of younger bedding-oblique faults.

Journal Articles

Application of three-dimensional laser scanning data to acquire geometrical data for fractured rock mass modeling

Hayano, Akira; Matsukawa, Shun*; Xu, Z.*; Itakura, Kenichi*

Proceedings of 8th Asian Rock Mechanics Symposium (ARMS-8) (USB Flash Drive), 9 Pages, 2014/10

In generally, the geological observation of a gallery wall is performed based on geologists' traditional techniques. However, to reduce the differences in data quality attributable to geologists' individual judgments and experiences, it is necessary to provide a method to acquire objective data that are unaffected by a geologist's subjectivity. It is also necessary to reduce the work volume associated with geological observations of gallery walls. Three-dimensional laser scanning (3DLS) is useful as a means for achieving this goal. In this study, acquisition of geometric data of fractures distributed on the gallery wall has been conducted using 3DLS data while clarifying the geological observation data necessary for modeling of a fractured rock mass. The acquired geometric data of fractures were compared with data acquired by a geologist. Consequently, the fractures were extracted by visible reading of images generated from 3DLS data, then geometric data was generated.

JAEA Reports

Enhancement of the methodology of repository design and post-closure performance assessment for preliminary investigation stage, 2; Progress report on NUMO-JAEA collaborative research in FY2012 (Joint research)

Shibata, Masahiro; Sawada, Atsushi; Tachi, Yukio; Hayano, Akira; Makino, Hitoshi; Wakasugi, Keiichiro; Mitsui, Seiichiro; Oda, Chie; Kitamura, Akira; Osawa, Hideaki; et al.

JAEA-Research 2013-037, 455 Pages, 2013/12

JAEA-Research-2013-037.pdf:42.0MB

Following FY2011, JAEA and NUMO have conducted a collaborative research work which is designed to enhance the methodology of repository design and performance assessment in preliminary investigation stage. With regard to (1) study on rock suitability in terms of hydrology, the tree diagram of methodology of groundwater travel time has been extended for crystalline rock, in addition, tree diagram for sedimentary rock newly has been organized. With regard to (2) study on scenario development, the existing approach has been improved in terms of a practical task, and applied and tested for near field focusing on the buffer. In addition, the uncertainty of some important processes and its impact on safety functions are discussed though analysis. With regard to (3) study on setting radionuclide migration parameters, the approaches for parameter setting have been developed for sorption for rocks and solubility, and applied and tested through parameter setting exercises for key radionuclides.

JAEA Reports

Method development to evaluate retardation effects of nuclide migration in the near-field host rock

Hayano, Akira; Sawada, Atsushi

JAEA-Research 2012-038, 32 Pages, 2013/02

JAEA-Research-2012-038.pdf:3.66MB

The purpose of this study is to contribute to methodology development for evaluating retardation effects of nuclide transport in near-field host rock to flexibly respond to the uncertainty of SDMs. Initially, the methodology for evaluating retardation effects of nuclide transport quantitatively in near-field host rock was developed. Then, the nuclide transport analysis using the data obtained at the surface-based investigation phase of Mizunami underground laboratory project was carried out in order to show the example of application for the methodology. Finally, the impact on results of evaluation caused by the uncertainty of SDMs was considered, and feedback to the investigation of geological environment was given from the result of the analysis of this study.

JAEA Reports

Enhancement of the methodology of repository design and post-closure performance assessment for preliminary investigation stage; Progress report on NUMO-JAEA collaborative research in FY2011 (Joint research)

Shibata, Masahiro; Sawada, Atsushi; Tachi, Yukio; Makino, Hitoshi; Hayano, Akira; Mitsui, Seiichiro; Taniguchi, Naoki; Oda, Chie; Kitamura, Akira; Osawa, Hideaki; et al.

JAEA-Research 2012-032, 298 Pages, 2012/09

JAEA-Research-2012-032.pdf:33.68MB

JAEA and NUMO have conducted a collaborative research work which is designed to enhance the methodology of repository design and performance assessment in preliminary investigation phase. The topics and the conducted research are follows; (1) Study on selection of host rock: in terms of hydraulic properties, items for assessing rock property, and assessment methodology of groundwater travel time has been organized with interaction from site investigation. (2) Study on development of scenario: the existing approach has been embodied, in addition, the phenomenological understanding regarding dissolution of and nuclide release from vitrified waste, corrosion of the overpack, long-term performance of the buffer are summarized. (3) Study on setting nuclide migration parameters: the approach for parameter setting has been improved for sorption and diffusion coefficient of buffer/rock, and applied and tested for parameter setting of key radionuclides. (4) Study on ensuring quality of knowledge: framework for ensuring quality of knowledge has been studied and examined aimed at the likely disposal facility condition.

Journal Articles

Product data models for the life cycle management system of tunnel construction

Xu, Z.*; Itakura, Kenichi*; Yamachi, Hiroshi*; Otsu, Shinichi*; Hayano, Akira; Matsui, Hiroya; Sato, Toshinori

Heisei-24 Nendo (2012 Nen) Shigen, Sozai Gakkai Shuki Taikai Koenshu, p.63 - 66, 2012/09

no abstracts in English

Journal Articles

Identified charged hadron production in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Armendariz, R.*; et al.

Physical Review C, 83(6), p.064903_1 - 064903_29, 2011/06

 Times Cited Count:184 Percentile:99.44(Physics, Nuclear)

Transverse momentum distributions and yields for $$pi^{pm}, K^{pm}, p$$, and $$bar{p}$$ in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the RHIC. We present the inverse slope parameter, mean transverse momentum, and yield per unit rapidity at each energy, and compare them to other measurements at different $$sqrt{s}$$ collisions. We also present the scaling properties such as $$m_T$$ and $$x_T$$ scaling and discuss the mechanism of the particle production in $$p + p$$ collisions. The measured spectra are compared to next-to-leading order perturbative QCD calculations.

Journal Articles

Azimuthal correlations of electrons from heavy-flavor decay with hadrons in $$p+p$$ and Au+Au collisions at $$sqrt{s_{NN}}$$ = 200 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.

Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04

 Times Cited Count:8 Percentile:49.7(Physics, Nuclear)

Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled $$p+p$$ collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to $$p+p$$ collisions.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2009

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; Mizuno, Takashi; et al.

JAEA-Review 2011-007, 145 Pages, 2011/03

JAEA-Review-2011-007.pdf:16.51MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU Project are planned in three overlapping phases; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document introduces the results of the research and development in fiscal year 2009, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration, etc. The goals of the Phase 2 are to develop and revise the models of the geological environment using the investigation results obtained during excavation and determine and assess changes in the geological environment in response to excavation, to evaluate the effectiveness of engineering techniques used for construction, maintenance and management of underground facilities, to establish detailed investigation plans of Phase 3.

JAEA Reports

Result and considerations on the pre-excavation grouting below four hundreds meter depth of the ventilation shaft

Ishii, Yoji; Watanabe, Kazuhiko; Kamiya, Akira; Hayano, Akira; Mikake, Shinichiro; Takeuchi, Shinji; Ikeda, Koki; Yamamoto, Masaru; Sugihara, Kozo

JAEA-Technology 2010-044, 92 Pages, 2011/02

JAEA-Technology-2010-044.pdf:11.73MB

The "Mizunami Underground Research Laboratory" has been carrying out scientific research in granite to establish the technological basis for high-level radioactive waste disposal. To get reliable information on the rock mass geology and hydrogeology and on the bedrock conditions, a pilot borehole investigation was carried out before sinking the ventilation shaft. During this investigation, a zone with high hydraulic head and low hydraulic conductivity was observed at around GL-400m. To reduce water inflow during excavation, pre-excavation grouting with micro-fine cement was done in this region before sinking the Ventilation Shaft. Despite the high hydraulic head and the low hydraulic conductivity, effective reduction of water-inflow was achieved.

56 (Records 1-20 displayed on this page)