Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of water activity on the mechanical glass transition and dynamical transition of bacteria

Sogabe, Tomochika*; Nakagawa, Hiroshi; Yamada, Takeshi*; Koseki, Shigenobu*; Kawai, Kiyoshi*

Biophysical Journal, 121(20), p.3874 - 3882, 2022/10

 Times Cited Count:2 Percentile:36.38(Biophysics)

The purpose of this study was to clarify the glass transition behavior of bacteria ($$Cronobacter sakazakii$$) as a function of water activity ($$a_{rm w}$$). Mechanical relaxation was investigated at 298 K, and the mechanical $$a_{rm wc}$$ ($$a_{rm w}$$ at which mechanical glass transition occurs at 298 K) was determined to be 0.667. Temperature-dependency of mean square displacement was investigated by inelastic neutron scattering. From the linear fitting, two dynamical transition temperatures (low and high-$$T_{rm ds}$$) were determined. There was a minor effect of $$a_{rm w}$$ on the low-$$T_{rm ds}$$ except for the anhydrous sample. The high-$$T_{rm ds}$$ largely increased with the decrease in $$a_{rm w}$$. The dynamical $$a_{rm wc}$$determined by high-$$T_{rm ds}$$ (0.688) was slightly higher than the mechanical $$a_{rm wc}$$ because of the difference in the measurement time-scale. The high-$$T_{rm ds}$$ was converted to the glass transition temperature ($$T_{rm g}$$), and anhydrous $$T_{rm g}$$ was estimated to be 411 K. Bacterial inactive-active transition was discussed according to the glass transition behavior.

1 (Records 1-1 displayed on this page)
  • 1