Refine your search:     
Report No.
 - 
Search Results: Records 1-16 displayed on this page of 16
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Generation of stable and low-divergence 10-MeV quasimonoenergetic electron bunch using argon gas jet

Mori, Michiaki; Kondo, Kiminori; Mizuta, Yoshio*; Kando, Masaki; Kotaki, Hideyuki; Nishiuchi, Mamiko; Kado, Masataka; Pirozhkov, A. S.; Ogura, Koichi; Sugiyama, Hironori*; et al.

Physical Review Special Topics; Accelerators and Beams, 12(8), p.082801_1 - 082801_5, 2009/08

 Times Cited Count:22 Percentile:78(Physics, Nuclear)

The pointing stability and divergence of a quasimonoenergetic electron bunch generated in a self-injected laser-plasma acceleration regime using 4 TW laser is studied. A pointing stability of 2.4 mrad root-mean-square (RMS) and a beam divergence of 10.6 mrad (RMS) were obtained using an argon gas-jet target for 50 sequential shots, while these values were degraded by a factor of three at the optimum condition using helium. The peak electron energies were 8.5$$pm$$0.7 MeV and 24.8$$pm$$3.6 MeV using argon and helium, respectively. The experimental results indicate that the different propagation condition could be generated with the different material, although it is performed with the same irradiation condition.

Journal Articles

Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

Yogo, Akifumi; Sato, Katsutoshi; Nishikino, Masaharu; Mori, Michiaki; Teshima, Teruki*; Numasaki, Hodaka*; Murakami, Masao*; Demizu, Yusuke*; Akagi, Takashi*; Nagayama, Shinichi*; et al.

Applied Physics Letters, 94(18), p.181502_1 - 181502_3, 2009/05

 Times Cited Count:109 Percentile:94.78(Physics, Applied)

Journal Articles

Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets

Nishiuchi, Mamiko; Daito, Izuru; Ikegami, Masahiro; Daido, Hiroyuki; Mori, Michiaki; Orimo, Satoshi; Ogura, Koichi; Sagisaka, Akito; Yogo, Akifumi; Pirozhkov, A. S.; et al.

Applied Physics Letters, 94(6), p.061107_1 - 061107_3, 2009/02

 Times Cited Count:57 Percentile:87.53(Physics, Applied)

A pair of conventional permanent magnet quadrupoles is used to focus a 2.4 MeV laser-driven proton beam at a 1 Hz repetition rate. The magnetic field strengths are 55 T/m and 60 T/m for the first and second quadrupoles respectively. The proton beam is focused to a spot size (full width at half maximum) of 2.7$$times$$8 mm$$^{2}$$ at a distance of 650 mm from the source. This result is in good agreement with a Monte Carlo particle trajectory simulation.

Oral presentation

Pointing stabilization of electron beam driven by 4TW laser

Mori, Michiaki; Mizuta, Yoshio*; Kondo, Kiminori; Nishiuchi, Mamiko; Kado, Masataka; Kando, Masaki; Pirozhkov, A. S.; Kotaki, Hideyuki; Ogura, Koichi; Sugiyama, Hironori*; et al.

no journal, , 

The collimatability of quasi-monoenergetic electron beam production in the self-injected laser-plasma acceleration regime is studied. The collimation of electron beam drived by terawatt femtosecond laser (4.1 TW, 40 fs) is measured at two species of gas material (Helium gasjet and Argon gasjet). We measured 3.2 mrad pointing stability and beam divergence of 11 mrad (r.m.s.) at Argon gasjet for 50 sequencial shots. At such condition, the peak electron energy is 9.1$$pm$$1.0 MeV with 80% reproducebility. For Helium, the pointing stability is three times larger than that of Argon. It is considered that the laser channel formation is important role for stable electron beam generation.

Oral presentation

Pointing stability of quasi-monoenergetic electron bunch accelerated by laser wakefield

Mori, Michiaki; Mizuta, Yoshio*; Kondo, Kiminori; Nishiuchi, Mamiko; Kado, Masataka; Kando, Masaki; Pirozhkov, A. S.; Kotaki, Hideyuki; Ogura, Koichi; Sugiyama, Hironori*; et al.

no journal, , 

The stability and collimatability of quasi-monoenergetic electron beam production in the self-injected laser-plasma acceleration regime are studied. The collimation of electron beam drived by terawatt femtosecond laser (4.5 TW, 40 fs) is measured at two species of gas material (Helium gasjet and Argon gasjet). We measured 3.2 mrad pointing stability and beam divergence of 11 mrad (r.m.s.) at Argon gasjet for 50 continuous shots. At such condition, the peak electron energy is 9.1$$pm$$1.6 MeV. For Helium, the pointing stability is three times larger than that of Argon. It is considered that the laser channel formation is important role for stable electron beam generation.

Oral presentation

Proton acceleration and laser-plasma interaction diagnostics with J-KAREN laser

Pirozhkov, A. S.; Mori, Michiaki; Yogo, Akifumi; Kiriyama, Hiromitsu; Ogura, Koichi; Sagisaka, Akito; Ma, J.*; Orimo, Satoshi; Nishiuchi, Mamiko; Sugiyama, Hironori*; et al.

no journal, , 

Oral presentation

Transportation of the laser-driven MeV proton beam for the application; Spatial focusing and spectral enhancement with PMQs

Nishiuchi, Mamiko; Daito, Izuru; Mori, Michiaki; Orimo, Satoshi; Ogura, Koichi; Sagisaka, Akito; Sakaki, Hironao; Hori, Toshihiko; Yogo, Akifumi; Pirozhkov, A. S.; et al.

no journal, , 

From our previous research, we have successfully produce MeV proton beam by 1Hz repetition rate stabely from the interaction between the femto-second TW laser with solid target. Produced proton beam exhibits lower emittance. The number of proton beam is 10$$^{13}$$. However, it shows large divergence angle of 10 degree. The energy spectrum exhibits 100% energy spread. These are problematic for some specific applications. In this study we transported the laser-driven proton beam with permanent quadrapole magnet for the future application. We successfully obtain focused proton beam as well as the monochromatic proton beam. Those spatial distribution at the focus point as well as the spectral information is well reproduced by the montecalro simulation.

Oral presentation

Production of radioisotope from lithium using laser induced proton beams

Ogura, Koichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Orimo, Satoshi; Sagisaka, Akito; Nishiuchi, Mamiko; Mori, Michiaki; Yogo, Akifumi; Pirozhkov, A. S.; Sugiyama, Hironori*; et al.

no journal, , 

Protons with energies up to 3 MeV have been generated by the irradiation of a 7.5 $$mu$$m thickness target by a 1 Hz table top laser with intensity of 700mJ. These protons were used to induce the nuclear reaction 7Li(p,n)7Be. Simultaneously, energy of proton was detected by a time of flight method.

Oral presentation

Energetic proton beam generation driven by J-KAREN laser

Mori, Michiaki; Ogura, Koichi; Yogo, Akifumi; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Pirozhkov, A. S.; Sagisaka, Akito; Orimo, Satoshi; Tampo, Motonobu; Daito, Izuru; et al.

no journal, , 

Experimental studies of laser-driven ion acceleration aimed at ion therapy for cancer treatment are being conducted at the PMRC of JAEA using the J-KAREN Ti:Sapphire laser system at JAEA's APRC. In recent experiments thin foil targets have been irradiated with focused 38 fs laser pulses at the 1.8J laser energy. The energy spectrum of the proton beam is observed to extend to a cut-off value in excess of 7-MeV. Our results expose the prospects and challenges associated with developing a laser-driven ion therapy facility.

Oral presentation

Laser driven ion acceleration by J-KAREN laser at JAEA

Nishiuchi, Mamiko; Ogura, Koichi; Sagisaka, Akito; Yogo, Akifumi; Pirozhkov, A. S.; Mori, Michiaki; Kiriyama, Hiromitsu; Orimo, Satoshi; Tampo, Motonobu; Daito, Izuru; et al.

no journal, , 

no abstracts in English

Oral presentation

Proton generation from a thin-foil target by using a high-intensity laser

Sagisaka, Akito; Mori, Michiaki; Pirozhkov, A. S.; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Tampo, Motonobu; Sakaki, Hironao; Hori, Toshihiko; et al.

no journal, , 

no abstracts in English

Oral presentation

Towards the laser-driven proton accelerator for cancer therapy; Benchmark test of the PARMILA code at the transport and irradiation test beam line

Nishiuchi, Mamiko; Sakaki, Hironao; Hori, Toshihiko; Bolton, P.; Ogura, Koichi; Yogo, Akifumi; Pirozhkov, A. S.; Sagisaka, Akito; Orimo, Satoshi; Mori, Michiaki; et al.

no journal, , 

no abstracts in English

Oral presentation

7-MeV class proton beam generation driven by J-KAREN laser

Mori, Michiaki; Ogura, Koichi; Yogo, Akifumi; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Pirozhkov, A. S.; Sagisaka, Akito; Orimo, Satoshi; Tampo, Motonobu; Daito, Izuru; et al.

no journal, , 

no abstracts in English

Oral presentation

Reforming on surface of metallic material for fuel cell by using high-intensity laser driven proton beam

Orimo, Satoshi; Abe, Hiroshi; Daido, Hiroyuki; Nishiuchi, Mamiko; Kishimoto, Masahiko*; Aone, Shigeo*; Uchida, Hirohisa*; Ogura, Koichi; Pirozhkov, A. S.; Suguyama, Hironori*; et al.

no journal, , 

The fuel cell was researched in the Kansai Photon Science Institute, JAEA. It has aimed at the surface modification of a metallic material. The laser driven proton beam is a spectrum of 10 kev-MeV that the pulse duration is about ns. The irradiation did -10-100 shot by 1Hz J-KAREN laser system.

Oral presentation

Activity produced by laser induced proton beams

Ogura, Koichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Orimo, Satoshi; Sagisaka, Akito; Nishiuchi, Mamiko; Mori, Michiaki; Yogo, Akifumi; Pirozhkov, A. S.; Sugiyama, Hironori*; et al.

no journal, , 

Ultrashort and high intensity laser can induce high energy protons. Proton beams have a wide range of applications such as in the production of radioisotopes and proton therapy. An energy of the proton beam has a wide distribution. The distribution of activity in depth is calculated while laser induced protons are injected into an iron plate.

Oral presentation

Laser-driven proton generation from a thin-foil target

Sagisaka, Akito; Mori, Michiaki; Pirozhkov, A. S.; Yogo, Akifumi; Nishiuchi, Mamiko; Ogura, Koichi; Orimo, Satoshi; Tampo, Motonobu; Sakaki, Hironao; Hori, Toshihiko; et al.

no journal, , 

High-intensity laser and mater interactions produce high-energy particles, hard X-ray, high-order harmonics, and terahertz (THz) radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical applications. We have performed the experiment of proton generation from a thin-foil target for developing the laser-driven ion source. We use a Ti:sapphire laser system (J-KAREN) at JAEA. A laser beam focused by an off-axis parabolic mirror on the thin-foil target. The pulse duration of laser is $$sim$$40 fs (FWHM). The estimated peak intensity is $$sim$$5$$times$$10$$^{19}$$W/cm$$^{2}$$. We observed the protons at the rear side of the target with a TOF(Time of Flight) proton spectrometer. The maximum energy of proton is $$sim$$7 MeV with a 2.5 $$mu$$m thick stainless-steel target.

16 (Records 1-16 displayed on this page)
  • 1