Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Recent progress in the energy recovery linac project in Japan

Sakanaka, Shogo*; Akemoto, Mitsuo*; Aoto, Tomohiro*; Arakawa, Dai*; Asaoka, Seiji*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; et al.

Proceedings of 1st International Particle Accelerator Conference (IPAC '10) (Internet), p.2338 - 2340, 2010/05

Future synchrotron light source using a 5-GeV energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting R&D efforts for that. We are developing high-brightness DC photocathode guns, two types of cryomodules for both injector and main superconducting (SC) linacs, and 1.3 GHz high CW-power RF sources. We are also constructing the Compact ERL (cERL) for demonstrating the recirculation of low-emittance, high-current beams using above-mentioned critical technologies.

Journal Articles

972-MHz RF digital feedback control system for J-PARC linac

Kobayashi, Tetsuya; Michizono, Shinichiro*; Fang, Z.*; Matsumoto, Toshihiro*; Suzuki, Hiroyuki; Yamaguchi, Seiya*; Okada, Yoshihito*

Proceedings of 6th Annual Meeting of Particle Accelerator Society of Japan (CD-ROM), p.1068 - 1070, 2010/03

A 972-MHz RF system is being developed for 400-MeV upgrade of the J-PARC linac. The accelerating field stabilities should be less than $$pm$$1% in amplitude and $$pm$$1$$^{circ}$$ in phase. The basic digital LLRF (Low-Level RF) concept is the same as that of the present 324-MHz system with a compact-PCI crate. The main alterations are RF and clock generator (RF&CLK), mixer and I/Q modulator (IQ&Mixer) and digital LLRF algorithm. Since the typical decay time of the new system is faster (because its operational frequency is higher than that of the present 324-MHz cavity), chopped beam compensation is essential. The performance study of the digital feedback system with a cavity simulator is summarized.

Journal Articles

Digital feedback control for 972 MHz RF system of J-PARC linac

Michizono, Shinichiro*; Fang, Z.*; Matsumoto, Toshihiro*; Yamaguchi, Seiya*; Kobayashi, Tetsuya; Okada, Yoshihito*

Proceedings of 2009 Particle Accelerator Conference (PAC '09) (DVD-ROM), p.2201 - 2203, 2009/05

Upgrade of J-PARC linac has been planed using 972 MHz rf system. The rf eld regulation is required to be less than $$pm$$ 1% in amplitude and $$pm$$ 1$$^{circ}$$. in phase. The basic digital llrf concept is same as the present 324 MHz llrf system using a compact PCI crate. The main alterations are rf and clock generator (RF&LK), mixer and IQ modulator (IQ&Mixer) and digital llrf algorithm. Since the typical decay time is faster (due to higher operational frequency than present 324 MHz cavity), chopped beam compensation is one of the main concerns. Performance of the digital feedback system using a cavity simulator is summarized.

Journal Articles

Development of digital low level rf system

Michizono, Shinichiro*; Anami, Shozo*; Katagiri, Hiroaki*; Fang, Z.*; Matsumoto, Toshihiro*; Miura, Takako*; Yano, Yoshiharu*; Yamaguchi, Seiya*; Kobayashi, Tetsuya

Kasokuki, 5(2), p.127 - 136, 2008/07

One of the biggest advantages of the digital low level rf (LLRF) system is its flexibility. Owing to the recent rapid progress in digital devices (such as ADCs and DACs) and telecommunication devices (mixers and IQ modulators), digital LLRF system for accelerators becomes popular in these 10 years. The J-PARC linac LLRF system adopted cPCI crates and FPGA based digital feedback system. After the successful operation of J-PARC linac LLRF system, we developed the STF (ILC test facility in KEK) LLRF system. The future R&D projects (ILC and ERL) are also described from the viewpoints of LLRF.

Journal Articles

Progress in R&D efforts on the energy recovery linac in Japan

Sakanaka, Shogo*; Ago, Tomonori*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; Harada, Kentaro*; Hiramatsu, Shigenori*; Honda, Toru*; et al.

Proceedings of 11th European Particle Accelerator Conference (EPAC '08) (CD-ROM), p.205 - 207, 2008/06

Future synchrotron light sources based on the energy-recovery linacs (ERLs) are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. Our Japanese collaboration team is making efforts for realizing an ERL-based hard X-ray source. We report recent progress in our R&D efforts.

5 (Records 1-5 displayed on this page)
  • 1