Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 54

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Replacement of power manipulator in the No.2 concrete cells of JMTR Hot Laboratory

Iwamatsu, Shigemi; Kanazawa, Yoshiharu; Hayashi, Koji; Sozawa, Shizuo; Nakagawa, Tetsuya

JAEA-Testing 2009-006, 17 Pages, 2010/03

JAEA-Testing-2009-006.pdf:6.0MB

This report is concerned with replacement of the power manipulator in the No.2 concrete cell of JMTR Hot Laboratory in the 2008 fiscal year. It was carried out the replacement of power manipulator mainly on a chassis part including the remarkably aged wrist, shoulder and controller. The specifications of the machinery to be replaced, the installation and the acceptance inspection were described.

JAEA Reports

Renewal plan of the JMTR Hot Laboratory for the irradiation test of high burn-up fuels in FY2008

Sozawa, Shizuo; Nakagawa, Tetsuya; Iwamatsu, Shigemi; Hayashi, Koji; Tayama, Yoshinobu; Kawamata, Kazuo; Yonekawa, Minoru; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Omi, Masao

JAEA-Technology 2009-070, 27 Pages, 2010/03

JAEA-Technology-2009-070.pdf:7.46MB

Refurbishment of the Japan Materials Testing Reactor (JMTR), which is recognized as one of important facilities in Japan for safety research, is in progress by the JAEA. In Extensive safety research of light-water reactor (LWR) fuels and materials under a contract with the Nuclear and Industrial Safety Agency of Ministry of Economy, Trade and Industry of Japan, the irradiation tests are planned in order to examine integrity of the LWR fuels and structure materials. For the irradiation tests of high burnup fuels and irradiated materials in the JMTR, modification of the hot laboratory facilities are needed, which are (1) making of application books for strengthening JMTR hot-lab. cell-shielding, (2) the capsule assembling device of detailed design, (3) safety analysis for domestic transportation cask and (4) confirmatory testing of diamond drill of fuel-rod center-hole processing device.

JAEA Reports

Renewal plan of the JMTR Hot Laboratory for the Irradiation test of high burn-up fuels in FY2007

Sozawa, Shizuo; Nakagawa, Tetsuya; Omi, Masao; Hayashi, Koji; Iwamatsu, Shigemi; Kawamata, Kazuo; Kato, Yoshiaki; Kanazawa, Yoshiharu

JAEA-Technology 2009-069, 32 Pages, 2010/03

JAEA-Technology-2009-069.pdf:7.33MB

Refurbishment of the Japan Materials Testing Reactor (JMTR), which is recognized as one of important facilities in Japan for safety research, is in progress by the JAEA. In Extensive safety research of light-water reactor (LWR) fuels and materials under a contract with the Nuclear and Industrial Safety Agency of Ministry of Economy, Trade and Industry of Japan, the irradiation tests are planned in order to examine integrity of the LWR fuels and structure materials. For the irradiation tests of high burnup fuels and irradiated materials in the JMTR, modification of the hot laboratory facilities are needed, which are (1) strengthening JMTR hot-lab. cell-shielding, (2) the capsule assembling device, (3) domestic transportation cask, (4) fuel-rod center-hole processing device, (5) master-slave manipulators, (6) power manipulator, and (7) scanning electron microscope.

Journal Articles

Current status and future plan of JMTR Hot Laboratory

Kawamata, Kazuo; Nakagawa, Tetsuya; Omi, Masao; Hayashi, Koji; Shibata, Akira; Saito, Junichi; Niimi, Motoji

JAEA-Conf 2008-011, p.78 - 86, 2009/01

The JMTR-HL was founded to examine the objects mainly irradiated in the JMTR in 1971. The JMTR-HL has an advantage that the hot cell is connected with the reactor vessel of the JMTR by a canal. Hence it is easy to transport irradiated radioactive capsules and specimens through the canal. Since 1971, about 2,400 irradiated capsules have been treated in the JMTR-HL and various PIEs have been widely performed there. In recent years, several new techniques, e.g., an in-cell IASCC test, a scanning-electron microscope (SEM) / electron-back scattering-diffraction pattern (EBSD) observation, were added to the conventional PIEs. In addition, the JMTR-HL had contributed to realize an in-pile IASCC test program at the JMTR through the development of a TIG welding technique by remote-handling with manipulators in the hot cell for re-assembling of capsules. A modification of the facility to treat high burn-up fuels, up to about 100 GWD/t, is planned at the JMTR-HL now.

Journal Articles

Technical development for IASCC irradiation experiments at the JMTR

Shibata, Akira; Nakano, Junichi; Omi, Masao; Kawamata, Kazuo; Saito, Takashi; Hayashi, Koji; Saito, Junichi; Nakagawa, Tetsuya; Tsukada, Takashi

Proceedings of 16th International Conference on Nuclear Engineering (ICONE-16) (CD-ROM), 8 Pages, 2008/05

Irradiation assisted stress corrosion cracking (IASCC) is considered to be one of the key issues in the aged Light Water Reactors. To simulate IASCC behavior by the in-pile or post-irradiation experiment, it is necessary to irradiate specimens up to a neutron fluence that is higher than the so-called IASCC threshold fluence. There are, however, some technical hurdles to be overcome for the experiments. The techniques assembling pre-irradiated specimens into a in-pile test capsule in a hot cell and the eveluation of material integrity of the capsule during a long term irradiation are necessary. To evaluate material integrity on capsules during a long term irradiation, tensile test and SSRT using specimens which was previously irradiated to 1.0$$sim$$3.9$$times$$10$$^{26}$$ n/m$$^{2}$$ were performed. In this paper, technical developments required for IASCC test, e.g. the development of assembling techniques for IASCC capsules and the evaluation of stainless steels which dosed high-fluence neutron were described.

JAEA Reports

Technology development on production of test specimens from irradiated capsule outer-tube and mechanical evaluation test of stainless steel with high dose carried out by the technology

Hayashi, Koji; Shibata, Akira; Iwamatsu, Shigemi; Sozawa, Shizuo; Takada, Fumiki; Omi, Masao; Nakagawa, Tetsuya

JAEA-Technology 2008-016, 51 Pages, 2008/03

JAEA-Technology-2008-016.pdf:45.58MB

The irradiation capsule 74M-52J was irradiated during total 136 cycles at reactor core of JMTR and the maximum neutron dose reached on 3.9$$times$$10$$^{26}$$n/m$$^{2}$$ at the capsule outer-tube made of a type 304 stainless steel. In order to produce mechanical test specimens from the outer tube, a punching technique was developed as a simple remote-handling method in a hot-cell. From comparison between the punching and the mechanical cutting methods, it was clarified that the punching technique was applicable to practical use. Moreover, an evaluation test of mechanical properties using specimens sampled from the 74M-52 was performed in-water high temperature condition, less than 288$$^{circ}$$C. The result shows that the residual elongation is 18% at 150$$^{circ}$$C and 13% at 288$$^{circ}$$C. It was confirmed that the type 304 stainless steel irradiated up to such high dose shows enough ductility.

JAEA Reports

HTTR hydrogen production system structure and main specifications of mock-up test facility (Contract research)

Kato, Michio; Hayashi, Koji; Aita, Hideki; Ohashi, Hirofumi; Sato, Hiroyuki; Inaba, Yoshitomo; Iwatsuki, Jin; Takada, Shoji; Inagaki, Yoshiyuki

JAEA-Technology 2007-022, 209 Pages, 2007/03

JAEA-Technology-2007-022.pdf:14.46MB

The mock-up test facility was fabricated to investigate performance of the steam generator for mitigation of the temperature fluctuation of helium gas and transient behavior of the hydrogen production system for HTTR and to obtain experimental data for verification of a dynamic analysis code. The test facility has an approximate hydrogen production capacity of 120Nm$$^{3}$$/h and the steam reforming process of methane; CH$$_{4}$$+H$$_{2}$$O=3H$$_{2}$$+CO, was used for hydrogen production of the test facility. An electric heater was used as a heat source instead of the reactor in order to heat helium gas up to 880 $$^{circ}$$C (4MPa) at the chemical reactor inlet which is the same temperature as the HTTR hydrogen production system. Fabrication of the test facility was completed in February in 2002, and seven cycle operations were carried out from March in 2002 to December in 2004. This report describes the structure and main specifications of the test facility.

Journal Articles

Research and development on system integration technology for connection of hydrogen production system to an HTGR

Inagaki, Yoshiyuki; Ohashi, Hirofumi; Inaba, Yoshitomo; Sato, Hiroyuki; Nishihara, Tetsuo; Takeda, Tetsuaki; Hayashi, Koji; Ogawa, Masuro

Nuclear Technology, 157(2), p.111 - 119, 2007/02

 Times Cited Count:10 Percentile:58.16(Nuclear Science & Technology)

Japan Atomic Energy Agency (JAEA) has been promoting research and development on the hydrogen production technology with a high temperature gas-cooled reactor (HTGR) with a view to contributing to the global warming issue and hydrogen energy society in the near future. The system integration technology for connection of the hydrogen production system to HTGR is one of the key technologies to put hydrogen production with nuclear energy to commercial use. Research and development on the system integration technology have been carried out about four items, that is, (a) control technology to keep reactor operation against thermal disturbance caused by the hydrogen production system, (b) estimation of tritium permeation from reactor to hydrogen, (c) countermeasure against explosion and (d) development of high temperature valve to isolate reactor and hydrogen production systems in accidents. This report describes research activities on the system integration technology at JAEA.

Journal Articles

Evaluation of hydrogen production system coupling with HTTR using dynamic analysis code

Sato, Hiroyuki; Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Hayashi, Koji; Inagaki, Yoshiyuki

Nihon Genshiryoku Gakkai Wabun Rombunshi, 5(4), p.292 - 304, 2006/12

The Japan Atomic Energy Agency, JAEA, was entrusted "Development of Nuclear Heat Utilization Technology" by Ministry of Education, Culture, Sports, Science and Technology. In this development, the JAEA investigated the system integration technology to couple the hydrogen production system by steam reforming with the High Temperature Engineering Test Reactor, HTTR. Prior to the construction of the hydrogen production system coupling with the HTTR, a dynamic analysis code had to be developed to evaluate the system transient behaviour of the hydrogen production system because there are no examples of chemical facilities coupled with nuclear reactor in the world. This report describes the development and the verification of the analysis code, N-HYPAC, which can estimate transient behaviour of the hydrogen production system by steam reforming. The results of this investigation provide that the influence of the thermal disturbance caused by the hydrogen production system on the HTTR can be estimated when other hydrogen production system such as thermochemical process is adopted.

Journal Articles

Development of control technology for HTTR hydrogen production system with mock-up test facility; System controllability test for loss of chemical reaction

Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji; Inagaki, Yoshiyuki

Nuclear Engineering and Design, 236(13), p.1396 - 1410, 2006/07

 Times Cited Count:14 Percentile:68.12(Nuclear Science & Technology)

The Japan Atomic Energy Agency has been planning the demonstration test of hydrogen production with the High Temperature Engineering Test Reactor (HTTR). In a HTTR hydrogen production system (HTTR-H2), it is required to control a primary helium temperature within an allowable value at a reactor inlet to prevent a reactor scram. A Cooling system for a secondary helium with a steam generator (SG) and a radiator is to be installed at the downstream of a chemical rector in a secondary helium loop in order to mitigate the thermal disturbance caused by the hydrogen production system. Prior to construction of HTTR-H2, the simulation test with a mock-up test facility has been carried out to establish the controllability on the helium temperature using the cooling system against the loss of chemical reaction. It was confirmed that the fluctuations of the helium temperature at chemical reactor outlet, more than 200 K, at the loss of chemical reaction could be successfully mitigated within the target of $$pm$$10 K at SG outlet. A dynamic simulation code of the cooling system for the HTTR-H2 was verified with the obtained test data.

JAEA Reports

Annual report on experimental operations and maintenances of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2004 fiscal year (Contract research)

Hayashi, Koji; Ohashi, Hirofumi; Morisaki, Norihiro; Kato, Michio; Aita, Hideki; Takeda, Tetsuaki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Inagaki, Yoshiyuki

JAEA-Technology 2006-013, 73 Pages, 2006/03

JAEA-Technology-2006-013.pdf:6.27MB

This is annual report on the experimental test operations and maintenances of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system in 2004 fiscal year. The improvement work of catalyst dust filter in combustion system was performed in May 2004, and the performance was confirmed. The sixth experimental test operation was performed from June to July 2004. Periodic inspections on boiler equipment and high-pressure gas production facilities were performed from end of July to September 2004. The seventh experimental test operation was performed from October to December 2004 for chemical reaction shutdown test. From the results, a behavior of the helium-gas cooling system, consists of steam generator and radiator, during chemical reaction shutdown was confirmed. This report is summarized with the outline and the results of the test, maintenance works and inspections, and operation records in mentioned above.

JAEA Reports

Annual report on experimental operations and maintenances of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2003 fiscal year (Contract research)

Hayashi, Koji; Morisaki, Norihiro; Ohashi, Hirofumi; Kato, Michio; Aita, Hideki; Takeda, Tetsuaki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Inagaki, Yoshiyuki

JAEA-Technology 2006-012, 98 Pages, 2006/03

JAEA-Technology-2006-012.pdf:7.83MB

This is a report on the experimental operations and maintenances of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system in 2003 fiscal year. The fourth and fifth experimental test operations were performed, from May to July and from October to December in 2003, for the following tests; (a)start-up and shutdown operation test, (b)process change test, (c)continuous hydrogen-production test and (d)chemical reaction shutdown test. From the results, a long time-range stability of the hydrogen production system was confirmed, a behavior of the helium-gas cooling system, consists of steam generator and radiator, during chemical reaction shutdown, was understanded, and so on. Periodic inspections on boiler equipment and high-pressure gas production facilities were performed from end of July 2003. This report is summarized on outlines and results of the tests, outlines and results of the periodic inspections, and operation records of the mock-up test facility.

JAEA Reports

Annual report on experimental operations and maintenances of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2002 fiscal year (Contract research)

Hayashi, Koji; Ohashi, Hirofumi; Inaba, Yoshitomo; Kato, Michio; Aita, Hideki; Morisaki, Norihiro; Takeda, Tetsuaki; Nishihara, Tetsuo; Takada, Shoji; Inagaki, Yoshiyuki

JAEA-Technology 2006-011, 132 Pages, 2006/03

JAEA-Technology-2006-011.pdf:9.47MB

This report describes 2002 fiscal-year experimental test operations of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system. The improvement works were performed in May 2002. The second experimental test operation was performed from June 2002 and the performances of the improved parts were confirmed. Periodic inspections on boiler equipment and high-pressure gas production facilities were performed from end of July 2002. The third experimental test operation was performed, from October 2002, for (a)start-up and shutdown test, (b)process change test, (c)chemical reaction shutdown test and (d)characteristics test on steam reformer. It was confirmed that the changes of helium gas temperature, caused at steam reformer, could be mitigated into the target range by the steam generator. Maintenance works of high-pressure gas production facilities were also performed in February 2003. This report is summarized with the outline and the results of the test, maintenance works and inspections, and operation records in mentioned above.

JAEA Reports

Annual report on experimental operation of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2001 fiscal year (Contract research)

Hayashi, Koji; Inagaki, Yoshiyuki; Kato, Michio; Fujisaki, Katsuo*; Aita, Hideki; Takeda, Tetsuaki; Nishihara, Tetsuo; Inaba, Yoshitomo; Ohashi, Hirofumi; Katanishi, Shoji; et al.

JAERI-Tech 2005-032, 46 Pages, 2005/06

JAERI-Tech-2005-032.pdf:4.79MB

This is annual report on the experimental operation of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system in 2001 fiscal year. The first experimental operation was performed during two weeks from March 1, 2002 to March 13, 2002 to test on the thermal hydraulic performance of the steam reformer and also to train the operators. The thermal hydraulic performance test of the steam reformer was performed to evaluate the heat transfer characteristics between helium gas and process gas in the steam reformer. This report is summarized with an overview of the test, the results and its operation records.

JAEA Reports

Heat transfer characteristics evaluation of heat exchangers of mock-up test facility with full-scale reaction tube for HTTR hydrogen production system (Contract research)

Shimizu, Akira; Ohashi, Hirofumi; Kato, Michio; Hayashi, Koji; Aita, Hideki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Morisaki, Norihiro; Sakaki, Akihiro*; et al.

JAERI-Tech 2005-031, 174 Pages, 2005/06

JAERI-Tech-2005-031.pdf:20.71MB

Connection of hydrogen production system by steam reforming of methane to the High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Research Institute (JAERI) has been surveyed until now. Mock-up test facility of this steam reforming system with full-scale reaction tube was constructed in FY 2001, and a lot of operational test data on heat exchanges were obtained in these tests.In this report specifications, structures and heat transfer formulae of steam reformer, steam superheater, steam generator, condenser, helium gas cooler, feed gas heater and feed gas superheater were described. Evaluation codes were newly made to evaluate heat transfer characteristics from measured test data. Overall heat-transfer coefficient obtained from the experimental data were compared and evaluated with the prospective value calculated with heat transfer formulae. As a result, heat transfer performance and thermal efficiency of these heat exchangers were confirmed to be appropriate.

JAEA Reports

Improvement works report on mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system (Contract research)

Sakaki, Akihiro*; Kato, Michio; Hayashi, Koji; Fujisaki, Katsuo*; Aita, Hideki; Ohashi, Hirofumi; Takada, Shoji; Shimizu, Akira; Morisaki, Norihiro; Maeda, Yukimasa; et al.

JAERI-Tech 2005-023, 72 Pages, 2005/04

JAERI-Tech-2005-023.pdf:14.86MB

In order to establish the system integration technology to connect a hydrogen production system to a high temperature gas cooled reactor, the mock-up test facility with a full-scale reaction tube for the steam reforming HTTR hydrogen production system was constructed in fiscal year 2001 and its functional test operation was performed in the year. Seven experimental test operations were performed from fiscal year 2001 to 2004. On a period of each test operation, there happened some troubles. For each trouble, the cause was investigated and the countermeasures and the improvement works were performed to succeed the experiments. The tests were successfully achieved according to plan.This report describes the improvement works on the test facility performed from fiscal year 2001 to 2004.

JAEA Reports

Cause investigation and repair of breakage of catalyst dust filter on mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system (Contract research)

Morisaki, Norihiro; Hayashi, Koji; Inagaki, Yoshiyuki; Kato, Michio; Fujisaki, Katsuo*; Maeda, Yukimasa; Mizuno, Sadao*

JAERI-Tech 2005-009, 37 Pages, 2005/03

JAERI-Tech-2005-009.pdf:14.33MB

The breakage of the catalyst dust filter was found at the nozzle flange, which was welded onto the end plate of the filter, by the bubbling test using nitrogen gas of the mock-up model test facility. We investigated the cause of breakage and devised a repairing method. The cause of the breakage was the stress corrosion cracking (SCC) generated from the inside of the filter. The filter was repaired based on the following countermeasures such as reduction of condensed water in the filter, tensile stress and sensitization at welding joints. Furthermore, the inspection was carried out to investigate the structural integrity of the welding joints in the test facility of which structure, material and operating condition were similar to the filter. As the results, it was confirmed that the structural integrity was maintained.

Journal Articles

Study on control characteristics for HTTR hydrogen production system with mock-up test facility; System controllability test for fluctuation of chemical reaction

Inaba, Yoshitomo; Ohashi, Hirofumi; Nishihara, Tetsuo; Sato, Hiroyuki; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji

Nuclear Engineering and Design, 235(1), p.111 - 121, 2005/01

 Times Cited Count:8 Percentile:49.16(Nuclear Science & Technology)

Prior to the connection of a hydrogen production plant to the HTTR, the fluctuation tests of the chemical reaction in the steam reformer with the mock-up test facility of the HTTR hydrogen production system were carried out for the establishment and demonstration of the control technology. As a result, it was shown that the HTTR hydrogen production system with the same control system as the mock-up test facility can provide stable controllability for any disturbance at the steam reformer without the influence to the reactor. In addition, a dynamic simulation code for the HTTR hydrogen production system was verified with the obtained test data.

Journal Articles

Performance test results of mock-up test facility of HTTR hydrogen production system

Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Hayashi, Koji; Katanishi, Shoji; Takada, Shoji; Ogawa, Masuro; Shiozawa, Shusaku

Journal of Nuclear Science and Technology, 41(3), p.385 - 392, 2004/03

 Times Cited Count:17 Percentile:72.33(Nuclear Science & Technology)

Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30 scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. Before the mock-up test, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120Nm$$^{3}$$/h which satisfy the design value and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator.

JAEA Reports

Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system (Contract research)

Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio; Fujisaki, Katsuo; Aita, Hideki; Takeda, Tetsuaki; Nishihara, Tetsuo; Inaba, Yoshitomo; Ohashi, Hirofumi; Katanishi, Shoji; et al.

JAERI-Tech 2003-034, 129 Pages, 2003/05

JAERI-Tech-2003-034.pdf:7.62MB

no abstracts in English

54 (Records 1-20 displayed on this page)