Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Demonstration of laser Compton-scattered photon source at the cERL

Nagai, Ryoji; Hajima, Ryoichi; Shizuma, Toshiyuki; Mori, Michiaki; Akagi, Tomoya*; Kosuge, Atsushi*; Honda, Yosuke*; Araki, Sakae*; Terunuma, Nobuhiro*; Urakawa, Junji*

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1328 - 1330, 2015/09

Accelerator and laser technologies required for laser Compton scattering (LCS) photon source based on an energy-recovery linac (ERL) have been developed at the Compact ERL (cERL) facility. A high-flux, energy tunable, and monochromatic photon source such as the ERL-based LCS photon source is necessary for nondestructive assay of nuclear materials. For the demonstration of the ERL-based LCS photon generation, a laser enhancement cavity was installed at the recirculation loop of the cERL. The electron beam energy, the laser wavelength, and the collision angle are 20 MeV, 1064 nm, and 18 $$^{circ}$$, respectively. The calculated maximum energy of the LCS photons is about 7 keV. A silicon drift detector (SDD) with active area of 17 mm$$^{2}$$ placed 16.6 m from the collision point was used for observation of the LCS photons. As a result of the measurement, the flux on the detector, central energy, and energy width of the LCS photons were obtained as 1200/s, 6.91 keV, and 81 eV, respectively.

Journal Articles

Demonstration of high-flux photon generation from an ERL-based laser Compton photon source

Nagai, Ryoji; Hajima, Ryoichi; Mori, Michiaki; Shizuma, Toshiyuki; Akagi, Tomoya*; Araki, Sakae*; Honda, Yosuke*; Kosuge, Atsushi*; Terunuma, Nobuhiro*; Urakawa, Junji*

Proceedings of 6th International Particle Accelerator Conference (IPAC '15) (Internet), p.1607 - 1609, 2015/06

Accelerator and laser technologies required for laser Compton scattering (LCS) photon source based on an energy-recovery linac (ERL) have been developed at the Compact ERL (cERL) facility. A high-flux, energy tunable, and monochromatic photon source such as the ERL-based LCS photon source is necessary for nondestructive assay of nuclear materials. For the demonstration of the ERL-based LCS photon generation, a laser enhancement cavity was installed at the recirculation loop of the cERL. The electron beam energy, the laser wavelength, and the collision angle are 20 MeV, 1064 nm, and 18 deg., respectively. The calculated maximum energy of the LCS photons is about 7 keV. A silicon drift detector (SDD) with active area of 17 mm$$^{2}$$ placed 16.6 m from the collision point was used for observation of the LCS photons. As a result of the measurement, the flux on the detector, central energy, and energy width of the LCS photons were obtained as 1200 /s, 6.91 keV, and 81 eV, respectively.

Journal Articles

Construction of the equipment for a demonstration of laser Compton-scattered photon source at the cERL

Nagai, Ryoji; Hajima, Ryoichi; Mori, Michiaki; Shizuma, Toshiyuki; Akagi, Tomoya*; Kosuge, Atsushi*; Honda, Yosuke*; Urakawa, Junji*

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1328 - 1331, 2014/10

A high intensity $$gamma$$-ray source from the laser Compton scattering (LCS) by an electron beam in an energy-recovery linac (ERL) is a key technology for a nondestructive assay system to identify nuclear materials. In order to demonstrate accelerator and laser technologies required for a LCS photon generation, a LCS photon source is under construction at the Compact ERL (cERL). The LCS photon source consists of a mode-locked fiber laser and a laser enhancement cavity. A beamline and an experimental hatch are also under construction. The commissioning of the LCS photon source will be started in February 2015 and LCS photon generation is scheduled in March 2015.

Journal Articles

Development of the beamline flux monitor for the laser Compton-scattered photon source

Nagai, Ryoji; Hajima, Ryoichi; Mori, Michiaki; Shizuma, Toshiyuki; Akagi, Tomoya*; Kosuge, Atsushi*; Honda, Yosuke*; Urakawa, Junji*

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.839 - 842, 2014/10

In order to demonstrate accelerator and laser technologies required for a laser Compton scattering (LCS) photon generation, a LCS photon source is under construction at the Compact ERL (cERL). We considered the flux monitors for the adjustment LCS photon source. A thin scintillator detector and a silicon drift detector are employed as flux monitors and are installed at the upstream part of the LCS beamline. The background signal level due to the bremsstrahlung of the electron beam was measured by a CsI(pure) scintillator. In the result of the measurement, the background signal is acceptable level for the flux monitors.

Journal Articles

Construction of a laser Compton scattered photon source at cERL

Nagai, Ryoji; Hajima, Ryoichi; Mori, Michiaki; Shizuma, Toshiyuki; Akagi, Tomoya*; Honda, Yosuke*; Kosuge, Atsushi*; Urakawa, Junji*

Proceedings of 5th International Particle Accelerator Conference (IPAC '14) (Internet), p.1940 - 1942, 2014/07

In order to demonstrate required accelerator and laser technologies for a high intensity $$gamma$$-ray source from the laser Compton scattering (LCS), an LCS photon source and the peripheral equipment are under construction at the Compact ERL (cERL) at High Energy Accelerator Research Organization (KEK). The LCS photon source by an electron beam in the energy-recovery linac (ERL) is a key technology for a nondestructive assay system to identify nuclear species. The LCS photon source and the peripheral equipment consist of a mode-locked fiber laser, laser enhancement cavity, beamline, and experimental hatch. The commissioning of the LCS photon source will be started in February 2015.

Journal Articles

Study of Photo-Cathode RF Gun for a High Brightness Electron Beam

Yamazaki, Yoshio; Hirano, Koichiro*; Fukuda, Satoshi*; Takano, Mikio*; Araki, Sakae*; Terunuma, Nobuhiro*; Urakawa, Junji*

Proceedings of 9th European Particle Accelerator Conference (EPAC 2004), 0 Pages, 2004/07

Focusing on the cover layer materials (as the Radon Barrier Materials), which could have the effect to restrain the radon from scattering into the air and the effect of the radiation shielding, we produced the radon barrier materials with crude bentonite on an experimental basis, using the rotary type comprehensive unit for grinding and mixing, through which we carried out the evaluation of the characteristics thereof.

Oral presentation

Proposal of a $$gamma$$-ray NDA experiment at the Compact ERL

Hajima, Ryoichi; Hayakawa, Takehito; Seya, Michio; Kawata, Hiroshi*; Kobayashi, Yukinori*; Urakawa, Junji*

no journal, , 

no abstracts in English

Oral presentation

Overview of the equipment for a demonstration of laser Compton-scattered photon source at the cERL

Nagai, Ryoji; Hajima, Ryoichi; Kosuge, Atsushi; Mori, Michiaki; Shizuma, Toshiyuki; Nishimori, Nobuyuki; Akagi, Tomoya*; Honda, Yosuke*; Urakawa, Junji*

no journal, , 

A nondestructive assay system of isotopes by quasi-monochromatic $$gamma$$-rays and nuclear resonance fluorescence is under development in JAEA. The quasi-monochromatic $$gamma$$-rays are generated by laser Compton scattering (LCS) based on energy recovery linac accelerator and laser technologies. In order to demonstrate the accelerator and laser performance required for the $$gamma$$-ray source, an LCS experiment is planned at Compact ERL (cERL) at KEK. A mode-locked fiber laser, laser enhancement cavity, beamline, and experimental hatch are under construction for the LCS experiment. Up-to-date construction status is presented in detail.

Oral presentation

Plan of the laser Compton scattering experiment at the compact ERL

Nagai, Ryoji; Hajima, Ryoichi; Shizuma, Toshiyuki; Mori, Michiaki; Akagi, Tomoya*; Kosuge, Atsushi*; Honda, Yosuke*; Urakawa, Junji*

no journal, , 

no abstracts in English

Oral presentation

Development of the beamline flux monitor for the laser Compton-scattered photon source in the cERL

Nagai, Ryoji; Hajima, Ryoichi; Mori, Michiaki; Shizuma, Toshiyuki; Akagi, Tomoya*; Kosuge, Atsushi*; Honda, Yosuke*; Urakawa, Junji*

no journal, , 

no abstracts in English

11 (Records 1-11 displayed on this page)
  • 1