Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 96

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

First-principles calculations of hydrogen trapping energy on incoherent interfaces of aluminum alloys

Yamaguchi, Masatake; Ebihara, Kenichi; Tsuru, Tomohito; Itakura, Mitsuhiro

Materials Transactions, 64(11), p.2553 - 2559, 2023/11

We attempted to calculate the hydrogen trapping energies on the incoherent interfaces of MgZn$$_2$$ precipitates and Mg$$_2$$Si crystallites in aluminum alloys from first-principles calculations. Since the unit cell containing the incoherent interface does not satisfy the periodic boundary condition, resulting in a discontinuity of crystal blocks, the hydrogen trapping energy was calculated in a region far from the discontinuity (vacuum) region. We found considerable trapping energies for hydrogen atoms at the incoherent interfaces consisting of assumed atomistic arrangement. We also conducted preliminary calculations of the reduction in the cohesive energy by hydrogen trapping on the incoherent interfaces of Mg$$_2$$Si in the aluminum matrix.

Journal Articles

Nondestructive quantitative analysis of difficult-to-measure radionuclides $$^{107}$$Pd and $$^{99}$$Tc

Toh, Yosuke; Segawa, Mariko; Maeda, Makoto; Tsuneyama, Masayuki*; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Ebihara, Mitsuru*

Analytical Chemistry, 93(28), p.9771 - 9777, 2021/07

 Times Cited Count:3 Percentile:25.73(Chemistry, Analytical)

Journal Articles

Hydrogen-trapping energy in screw and edge dislocations in aluminum; First-principles calculations

Yamaguchi, Masatake; Itakura, Mitsuhiro; Tsuru, Tomohito; Ebihara, Kenichi

Materials Transactions, 62(5), p.582 - 589, 2021/05

 Times Cited Count:7 Percentile:74.45(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Hydrogen trapping in Mg$$_2$$Si and Al$$_7$$FeCu$$_2$$ intermetallic compounds in aluminum alloy; First-principles calculations

Yamaguchi, Masatake; Tsuru, Tomohito; Ebihara, Kenichi; Itakura, Mitsuhiro; Matsuda, Kenji*; Shimizu, Kazuyuki*; Toda, Hiroyuki*

Materials Transactions, 61(10), p.1907 - 1911, 2020/10

 Times Cited Count:7 Percentile:56.69(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Hydrogen-accelerated spontaneous microcracking in high-strength aluminium alloys

Tsuru, Tomohito; Shimizu, Kazuyuki*; Yamaguchi, Masatake; Itakura, Mitsuhiro; Ebihara, Kenichi; Bendo, A.*; Matsuda, Kenji*; Toda, Hiroyuki*

Scientific Reports (Internet), 10, p.1998_1 - 1998_8, 2020/04

 Times Cited Count:21 Percentile:83.04(Multidisciplinary Sciences)

Age-hardening has been one and only process to achieve high strength aluminum alloys since unlike iron and titanium, pure aluminum does not have other solid phases during heat treatment. Highly-concentrated precipitations play therefore dominant role in mechanical properties and hydrogen embrittlement of aluminium alloys. It has been considered that the coherent interface between matrix and precipitation does not contribute to the crack initiation and embrittlement due to its coherency. Here, we discovered the origin of unprecedented quasi-cleavage fracture mode. Hydrogen partitioning at various defect sites is investigated comprehensively combined with experiment, theory and first-principles calculations. We demonstrate that despite low excess free volume, the aluminum-precipitation interface is more preferable trap site than void and grain boundary. The cohesivity of the interface deteriorates significantly with increasing occupancy while hydrogen atoms are trapped stably up to extremely high occupancy equivalent to spontaneous cleavage.

Journal Articles

Optimization of mechanical properties in aluminum alloys $$via$$ hydrogen partitioning control

Toda, Hiroyuki*; Yamaguchi, Masatake; Matsuda, Kenji*; Shimizu, Kazuyuki*; Hirayama, Kyosuke*; Su, H.*; Fujihara, Hiro*; Ebihara, Kenichi; Itakura, Mitsuhiro; Tsuru, Tomohito; et al.

Tetsu To Hagane, 105(2), p.240 - 253, 2019/02

 Times Cited Count:0 Percentile:0(Metallurgy & Metallurgical Engineering)

no abstracts in English

Journal Articles

First-principles calculation of multiple hydrogen segregation along aluminum grain boundaries

Yamaguchi, Masatake; Ebihara, Kenichi; Itakura, Mitsuhiro; Tsuru, Tomohito; Matsuda, Kenji*; Toda, Hiroyuki*

Computational Materials Science, 156, p.368 - 375, 2019/01

 Times Cited Count:23 Percentile:77.63(Materials Science, Multidisciplinary)

The segregation of multiple hydrogen atoms along aluminum (Al) grain boundaries (GBs) and fracture surfaces (FSs) was investigated through first-principles calculations considering the characteristics of GBs. The results indicate that hydrogen segregation is difficult along low-energy GBs. The segregation energy of multiple hydrogen atoms along GBs and FSs and the cohesive energy was obtained for three types of high-energy Al GBs. With increasing hydrogen segregation along the GBs, the cohesive energy of the GB decreases and approaches zero with no decrease in GB segregation energy. The GB cohesive energy decreases in parallel with the volume expansion of the region of low electron density along the GB.

Journal Articles

Surface energy reduction by dissociative hydrogen adsorption on inner surface of pore in aluminum

Yamaguchi, Masatake; Tsuru, Tomohito; Ebihara, Kenichi; Itakura, Mitsuhiro

Keikinzoku, 68(11), p.588 - 595, 2018/11

no abstracts in English

Journal Articles

Interpretation of thermal desorption spectra of hydrogen from aluminum using numerical simulation

Ebihara, Kenichi; Yamaguchi, Masatake; Tsuru, Tomohito; Itakura, Mitsuhiro

Keikinzoku, 68(11), p.596 - 602, 2018/11

Hydrogen embrittlement (HE) is considered as one cause of stress corrosion cracking. HE is a serious problem in the development of high strength aluminum alloy as with steels. For understanding HE, it is inevitable to know hydrogen trapping states in the alloys and it can be identified using thermal desorption spectrometry of H. In this study, we numerically simulated thermal desorption spectra of hydrogen in aluminum for a cylindrical and a plate specimens and interpreted the desorption peaks included in them on the basis of the trap site concentration and the trap energy. As a result, we found that the peak at the lowest-temperature side can result from grain boundaries and confirmed that the reported interpretation for other peaks is reasonable. We also obtained the result showing the possibility that the trap site concentration of defects changes during heating the specimens. This result may give a suggestion for the interpretation of temperature desorption spectra of steels.

Journal Articles

Atmospheric modeling of $$^{137}$$Cs plumes from the Fukushima Daiichi Nuclear Power Plant; Evaluation of the model intercomparison data of the Science Council of Japan

Kitayama, Kyo*; Morino, Yu*; Takigawa, Masayuki*; Nakajima, Teruyuki*; Hayami, Hiroshi*; Nagai, Haruyasu; Terada, Hiroaki; Saito, Kazuo*; Shimbori, Toshiki*; Kajino, Mizuo*; et al.

Journal of Geophysical Research; Atmospheres, 123(14), p.7754 - 7770, 2018/07

 Times Cited Count:24 Percentile:70.42(Meteorology & Atmospheric Sciences)

We compared seven atmospheric transport model results for $$^{137}$$Cs released during the Fukushima Daiichi Nuclear Power Plant accident. All the results had been submitted for a model intercomparison project of the Science Council of Japan in 2014. We assessed model performance by comparing model results with observed hourly atmospheric concentrations of $$^{137}$$Cs, focusing on nine plumes over the Tohoku and Kanto regions. The results showed that model performance for $$^{137}$$Cs concentrations was highly variable among models and plumes. We also assessed model performance for accumulated $$^{137}$$Cs deposition. Simulated areas of high deposition were consistent with the plume pathways, though the models that best simulated $$^{137}$$Cs concentrations were different from those that best simulated deposition. The ensemble mean of all models consistently reproduced $$^{137}$$Cs concentrations and deposition well, suggesting that use of a multimodel ensemble results in more effective and consistent model performance.

Journal Articles

First-principles study of hydrogen segregation at the MgZn$$_{2}$$ precipitate in Al-Mg-Zn alloys

Tsuru, Tomohito; Yamaguchi, Masatake; Ebihara, Kenichi; Itakura, Mitsuhiro; Shiihara, Yoshinori*; Matsuda, Kenji*; Toda, Hiroyuki*

Computational Materials Science, 148, p.301 - 306, 2018/06

 Times Cited Count:37 Percentile:82.38(Materials Science, Multidisciplinary)

Hydrogen embrittlement susceptibility of high strength 7xxx series Al alloys has been recognized as the critical issues in the practical use of Al alloys. Focusing on the interface between MgZn$$_{2}$$ precipitates and an Al matrix, which is considered as one of the important segregation sites in these alloys, we investigated the stable $$eta$$-MgZn$$_{2}$$-Al interface, and the possible hydrogen trap sites in MgZn$$_{2}$$ and at the $$eta$$-MgZn$$_{2}$$-Al interface via first-principles calculation. Most of the interstitial sites inside the MgZn$$_{2}$$ crystal were not possible trap sites because their energy is relatively higher than that of other trap sites. The trap energy of the most favorable site at the $$eta$$-MgZn$$_{2}$$-Al is approximately -0.3 eV/H, which is more stable that of the interstitial site at the grain boundary. The interface between MgZn$$_{2}$$ and Al is likely to be a possible trap site in Al alloys.

Journal Articles

Development of a correction method for the time-of-flight prompt $$gamma$$-ray analysis

Huang, M.; Toh, Yosuke; Ebihara, Mitsuru*; Kimura, Atsushi; Nakamura, Shoji

Journal of Applied Physics, 121(10), p.104901_1 - 104901_7, 2017/03

 Times Cited Count:2 Percentile:10(Physics, Applied)

Journal Articles

Analysis of intergranular cracking in an alloy steel by hydrogen-enhanced decohesion

Yamaguchi, Masatake; Ebihara, Kenichi; Itakura, Mitsuhiro

Proceedings of 2016 International Hydrogen Conference (IHC 2016); Materials Performance in Hydrogen Environments, p.563 - 571, 2017/00

no abstracts in English

Journal Articles

Development of Prompt Gamma-ray Analysis at J-PARC/ANNRI

Toh, Yosuke; Ebihara, Mitsuru*; Huang, M.; Kimura, Atsushi; Nakamura, Shoji; Harada, Hideo

Hosha Kagaku, (33), p.1 - 9, 2016/03

Prompt Gamma-ray Analysis (PGA) uses capture $$gamma$$ rays, which are characteristic of each particular nucleus emitted from a sample while it is being irradiated with neutrons. It has been used as a rapid, nondestructive method for performing both qualitative and quantitative multielemental analysis. Therefore, cosmochemical, environmental, archeological samples and samples from materials science and engineering are analyzed. Although, researchers have endeavored to improve the accuracy and the detection sensitivity in PGA with the coincidence and anti-coincidence methods, further improvements are possible. We developed a new analytical technique (TOF-PGA) that combines Prompt Gamma-ray Analysis (PGA) and time-of-flight elemental analysis (TOF) by using an intense pulsed neutron beam at the Japan Proton Accelerator Research Complex (J-PARC). It allows us to obtain the results from both methods at the same time. Moreover, it can be used to quantify elemental concentrations in the sample, to which neither of these methods can be applied independently, if TOF-PGA is used. TOF-PGA showed high merits, although the capability may differ in terms of the target element and coexisting elements.

Journal Articles

Multiscale thermodynamic analysis on hydrogen-induced intergranular cracking in an alloy steel with segregated solutes

Yamaguchi, Masatake; Ebihara, Kenichi; Itakura, Mitsuhiro

Corrosion Reviews, 33(6), p.547 - 557, 2015/11

A multiscale analysis has been conducted on hydrogen-induced intergranular cracking at ambient temperature in medium strength (840 MPa) Ni-Cr steel with antimony, tin, and phosphorous segregation. Combining first-principles calculations and fracture mechanics experiments, a multiscale relationship between threshold stress intensity factor ($$K_{rm th}$$) and cohesive energy of grain boundary (the ideal work of interfacial separation, 2$$gamma$$$$_{int}$$) was revealed. The $$K_{rm th}$$ was found to decrease rapidly under a certain threshold of 2$$gamma$$$$_{int}$$, where the 2$$gamma$$$$_{int}$$ decreases mainly by mobile hydrogen segregation on fracture surfaces. This segregation is considered to arise during formation of the fracture surfaces under thermodynamic equilibrium in slow crack growth. The resulting strong decohesion probably makes it difficult to emit dislocations at microcrack tip region, leading to a large reduction of stress intensity factor. Our analysis based on this mobile hydrogen decohesion demonstrates that the $$K_{rm th}$$ decreases dramatically within a low and narrow range of hydrogen content in iron lattice in high-strength steels.

Journal Articles

Development of elemental analytical methods in BL04 ANNRI

Toh, Yosuke; Huang, M.; Kimura, Atsushi; Nakamura, Shoji; Harada, Hideo; Ebihara, Mitsuru*

Shiki, 28, P. 4, 2015/09

no abstracts in English

Journal Articles

Development of new non-destructive analysis by using an intense pulsed neutron beam

Toh, Yosuke; Ebihara, Mitsuru*; Huang, M.; Kimura, Atsushi; Nakamura, Shoji; Harada, Hideo

Isotope News, (736), p.22 - 26, 2015/08

no abstracts in English

Journal Articles

Synergistic effect of combining two nondestructive analytical methods for multielemental analysis

Toh, Yosuke; Ebihara, Mitsuru*; Kimura, Atsushi; Nakamura, Shoji; Harada, Hideo; Hara, Kaoru*; Koizumi, Mitsuo; Kitatani, Fumito; Furutaka, Kazuyoshi

Analytical Chemistry, 86(24), p.12030 - 12036, 2014/12

 Times Cited Count:16 Percentile:55.42(Chemistry, Analytical)

Non-destructive elemental analyses have been an indispensable tool for many fields of scientific research. Prompt $$gamma$$-ray analysis and time of flight elemental analysis uses the energy of the $$gamma$$ rays and the energy of neutron resonances, respectively. In both analyses, a sample is irradiated with neutrons and $$gamma$$ rays are detected. Thus, these methods are similar and could be replaced by a single measurement. However, these methods have never been applied simultaneously before. We have first developed a novel technique which combines these methods by using an intense pulsed neutron beam. It allows us to obtain the results from both methods at the same time. Moreover, significant synergy has been achieved. Specifically, it will be used to quantify elemental concentrations in the sample that neither of these methods can be applied. Here, we demonstrate how it can be used to extract reliable information from unresolved peaks in the spectra.

Journal Articles

Atomistic and continuum comparative studies on the stress distribution around a nano-crack on the grain boundary for modeling hydrogen embrittlement of iron

Ebihara, Kenichi; Kaburaki, Hideo; Itakura, Mitsuhiro

"Hagane No Kikaiteki Tokusei Ni Oyobosu Suiso No Koka To Sono Hyoka" Shimpojium Yokoshu (USB Flash Drive), 6 Pages, 2014/09

Since hydrogen(H) embrittlement is one factor causing degradation and/or fracture of steel, understanding its mechanism is required. The grain-boundary(GB) decohesion due to segregation of H is considered to cause the delayed fracture of high strength steels and the cold cracking in welding. In the model based on GB decohesion, information of strength of GBs estimated in the atomic scale is used for the estimation of strength or crack propagation in the macroscopic scale. However the modeling between the atomic and the macroscopic scales is not clear. In particular, the validity of the model using the elastic continuum around nano-cracks for stress concentration at the crack tip is not clear. Thus, we examined the difference of the stress distribution around the nano-crack which was estimated by molecular dynamics and by a continuum calculation. As a result, the discrepancy became remarkable at high strain. The stress concentration was not simulated by the elastic continuum model.

Journal Articles

A New X-ray fluorescence spectroscopy for extraterrestrial materials using muon beam

Terada, Kentaro*; Ninomiya, Kazuhiko*; Osawa, Takahito; Tachibana, Shogo*; Miyake, Yasuhiro*; Kubo, Kenya*; Kawamura, Naritoshi*; Higemoto, Wataru; Tsuchiyama, Akira*; Ebihara, Mitsuru*; et al.

Scientific Reports (Internet), 4, p.5072_1 - 5072_6, 2014/05

 Times Cited Count:38 Percentile:81.37(Multidisciplinary Sciences)

After the discovery of X-ray by Rontgen, mankind got a new eye to see through things. This fluoroscopy, so-called X-ray radiography that gives the density distribution of the inside of an object, has been applied to the vast research field such as natural/material/medical sciences, industry and technology. The recent development on the intense pulsed muon source at J-PARC MUSE (rate of 106 cps for 60 MeV/c) enabled us to pioneer a new frontier of analytical sciences. Here we report on a non-destructive elemental analysis by using muon capture. Controlling muon's momentum from 32.5 to 57.5 MeV/c. we successfully demonstrated a depth-profile analysis of light elements from several mm-thick layered materials, and non-destructive bulk analyses of meteorites containing organics. Now it is a beginning to utilize a new eye, muon radiography.

96 (Records 1-20 displayed on this page)