Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 97

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Observation of field-induced single-ion magnetic anisotropy in a multiorbital Kondo alloy (Lu,Yb)Rh$$_2$$Zn$$_{20}$$

Kitazawa, Takafumi; Ikeda, Yoichi*; Sakakibara, Toshiro*; Matsuo, Akira*; Shimizu, Yusei*; Tokunaga, Yo; Haga, Yoshinori; Kindo, Koichi*; Nambu, Yusuke*; Ikeuchi, Kazuhiko*; et al.

Physical Review B, 108(8), p.085105_1 - 085105_7, 2023/08

Journal Articles

Development of safety design philosophy of HTTR-Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Noguchi, Hiroki; Kurahayashi, Kaoru; Yasuda, Takanori; Nomoto, Yasunobu; Iigaki, Kazuhiko; Sato, Hiroyuki; Sakaba, Nariaki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

The safety design philosophy is developed for the HTTR (High Temperature Engineering Test Reactor) heat application test facility connecting high temperature gas-cooled reactor (HTGR) and the hydrogen production plant. The philosophy was proposed to apply proven conventional chemical plant standards to the hydrogen production facility for ensuring public safety against anticipated disasters caused by high pressure and combustible gases. The present study also proposed the safety design philosophy to meet specific safety requirements identified to the nuclear facilities with coupling to the hydrogen production facility such as measures to ensure a capability of normal operation of the nuclear facility against a fire and/or explosion of leaked combustible material, and fluctuation of amount of heat removal occurred in the hydrogen production plant. The safety design philosophy will be utilized to establish its basic and detailed designs of the HTTR-heat application test facility.

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and hydrogen production facility, 1; Overview of the HTTR heat application test plan to establish high safety coupling technology

Nomoto, Yasunobu; Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and Hydrogen Production Facility, 2; Development plan for coupling equipment between HTTR and Hydrogen Production Facility

Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; Noguchi, Hiroki; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 6 Pages, 2023/05

JAEA Reports

Document collection of the Special Committee on HTTR Heat Application Test

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Review 2022-016, 193 Pages, 2022/08

JAEA-Review-2022-016.pdf:42.06MB

Aiming to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR), Japan Atomic Energy Agency (JAEA) is planning a HTTR heat application test producing hydrogen with High Temperature Engineering Test Reactor (HTTR) achieved 950$$^{circ}$$C of the highest reactor outlet coolant temperature in the world. In the HTTR heat application test, it is required to establish its safety design realizing highly safe connection of a HTGR and a hydrogen production plant by the Nuclear Regulation Authority to obtain the permission of changes to reactor installation. However, installation of a system connecting the hydrogen production plant and a nuclear reactor, and its safety design has not been conducted so far in conventional nuclear power plant including HTTR in the world. A special committee on the HTTR heat application test, established under the HTGR Research and Development Center, considered a safety design philosophy for the HTTR heat application test based on an authorized safety design of HTTR in terms of conformity to the New Regulatory Requirements taking into account new considerable events as a result of the plant modification and connection of the hydrogen production plant. This report provides materials of the special committee such as technical reports, comments provided from committee members, response from JAEA for the comments and minutes of the committee.

JAEA Reports

Safety design philosophy of HTTR Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Technology 2022-011, 60 Pages, 2022/07

JAEA-Technology-2022-011.pdf:2.08MB

Japan Atomic Energy Agency is planning a High Temperature Engineering Test Reactor (HTTR) heat application test producing hydrogen with the HTTR which achieved the highest reactor outlet coolant temperature of 950$$^{circ}$$C in the world to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR). In the HTTR heat application test, it is required to establish its safety design for coupling a hydrogen production plant to HTGR through the licensing by the Nuclear Regulation Authority (NRA). A draft of a safety design philosophy for the HTTR heat application test facility was considered taking into account postulated events due to the plant modification and coupling of the hydrogen production plant based on the HTTR safety design which was authorized through the safety review of the NRA against New Regulatory Requirements. The safety design philosophy was examined to apply proven conventional chemical plant standards to the hydrogen production plant for ensuring public safety against disasters caused by high pressure gases. This report presents a result of a consideration on safety design philosophies regarding the reasonability and condition to apply the High Pressure Gas Safety Act for the hydrogen production plant, safety classifications, seismic design classification, identification of important safety system.

Journal Articles

Improving the safety of the high temperature gas-cooled reactor "HTTR" based on Japan's new regulatory requirements

Hamamoto, Shimpei; Shimizu, Atsushi; Inoi, Hiroyuki; Tochio, Daisuke; Homma, Fumitaka; Sawahata, Hiroaki; Sekita, Kenji; Watanabe, Shuji; Furusawa, Takayuki; Iigaki, Kazuhiko; et al.

Nuclear Engineering and Design, 388, p.111642_1 - 111642_11, 2022/03

 Times Cited Count:0 Percentile:33.72(Nuclear Science & Technology)

Following the Fukushima Daiichi Nuclear Power Plant accident in 2011, the Japan Atomic Energy Agency adapted High-Temperature engineering Test Reactor (HTTR) to meet the new regulatory requirements that began in December 2013. The safety and seismic classifications of the existing structures, systems, and components were discussed to reflect insights regarding High Temperature Gas-cooled Reactors (HTGRs) that were acquired through various HTTR safety tests. Structures, systems, and components that are subject to protection have been defined, and countermeasures to manage internal and external hazards that affect safety functions have been strengthened. Additionally, measures are in place to control accidents that may cause large amounts of radioactive material to be released, as a beyond design based accident. The Nuclear Regulatory Commission rigorously and appropriately reviewed this approach for compliance with the new regulatory requirements. After nine amendments, the application to modify the HTTR's installation license that was submitted in November 2014 was approved in June 2020. This response shows that facilities can reasonably be designed to meet the enhanced regulatory requirements, if they reflect the characteristics of HTGRs. We believe that we have established a reference for future development of HTGR.

Journal Articles

Seismic classification of high temperature engineering test reactor

Ono, Masato; Shimizu, Atsushi; Ohashi, Hirofumi; Hamamoto, Shimpei; Inoi, Hiroyuki; Tokuhara, Kazumi*; Nomoto, Yasunobu*; Shimazaki, Yosuke; Iigaki, Kazuhiko; Shinozaki, Masayuki

Nuclear Engineering and Design, 386, p.111585_1 - 111585_9, 2022/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In the late 1980s during the design stage, the seismic classification of the high temperature engineering test reactor (HTTR) was formulated. Owing to the lack of operation experiences of the HTTR to sufficiently understand the safety characteristics of high temperature gas cooled reactors (HTGR) at that time, the seismic classification of commercial light water reactors (LWR) was applied to HTTR. However, the subsequent operation experiences and test results using HTTR made it clear that the seismic classification of commercial LWR was somewhat too conservative for the HTGR. As a result, Class S facilities were downgraded compared to the commercial LWR. Moreover, the validity of the new seismic classification is confirmed. In June 2020, the Nuclear Regulatory Authority approved that the result of the seismic classification conformed to the standard rules of the reactor installation change.

Journal Articles

Proposal of evaluation method of graphite incombustibility

Hamamoto, Shimpei; Ohashi, Hirofumi; Iigaki, Kazuhiko; Shimazaki, Yosuke; Ono, Masato; Shimizu, Atsushi; Ishitsuka, Etsuo

Proceedings of 2021 International Congress on Advances in Nuclear Power Plants (ICAPP 2021) (USB Flash Drive), 6 Pages, 2021/10

Since the HTGR has a large amount of graphite material in the core, it is necessary to assume an accident in which the reactor pressure boundary is damaged and air flows into the core. It is important to state that at the time of this accident, graphite does not burn and the accident does not develop due to the heat of oxidation reaction. Therefore, in this study, in order to evaluate the combustibility of graphite materials, we propose a method to compare the calorific value and heat removal amount of the material. When calculating the calorific value, the structural material of HTTR, a high-temperature gas reactor in Japan, was used as a reference. The amount of air in contact with the structural material is a value determined from the chimney effect. The amount of heat release is the sum of convection and radiation. As a result of comparing the heat generation amount with the heat removal amount, it was shown that the heat release amount was always larger than the heat generation amount. This result shows that the graphite material does not depend on the state at the time of the air inflow accident, the temperature decreases and does not burn. It is important to clearly explain the non-flammability of graphite materials when deciding how to deal with severe accidents in HTGRs. This quantitative evaluation method based on a simple theory is considered useful.

JAEA Reports

Interim activity status report of "the group for investigation of reasonable safety assurance based on graded approach" (from September, 2019 to September, 2020)

Yonomoto, Taisuke; Nakashima, Hiroshi*; Sono, Hiroki; Kishimoto, Katsumi; Izawa, Kazuhiko; Kinase, Masami; Osa, Akihiko; Ogawa, Kazuhiko; Horiguchi, Hironori; Inoi, Hiroyuki; et al.

JAEA-Review 2020-056, 51 Pages, 2021/03

JAEA-Review-2020-056.pdf:3.26MB

A group named as "The group for investigation of reasonable safety assurance based on graded approach", which consists of about 10 staffs from Sector of Nuclear Science Research, Safety and Nuclear Security Administration Department, departments for management of nuclear facility, Sector of Nuclear Safety Research and Emergency Preparedness, aims to realize effective graded approach (GA) about management of facilities and regulatory compliance of JAEA. The group started its activities in September, 2019 and has had discussions through 10 meetings and email communications. In the meetings, basic ideas of GA, status of compliance with new regulatory standards at each facility, new inspection system, etc were discussed, while individual investigation at each facility were shared among the members. This report is compiled with expectation that it will help promote rational and effective safety management based on GA by sharing contents of the activity widely inside and outside JAEA.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Journal Articles

Comprehensive seismic evaluation of HTTR against the 2011 off the Pacific coast of Tohoku Earthquake

Ono, Masato; Iigaki, Kazuhiko; Sawahata, Hiroaki; Shimazaki, Yosuke; Shimizu, Atsushi; Inoi, Hiroyuki; Kondo, Toshinari; Kojima, Keidai; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 4(2), p.020906_1 - 020906_8, 2018/04

On March 11th, 2011, the 2011 off the Pacific coast of Tohoku Earthquake of magnitude 9.0 occurred. When the great earthquake occurred, the High Temperature Engineering Test Reactor (HTTR) had been stopped under the periodic inspection and maintenance of equipment and instruments. A comprehensive integrity evaluation was carried out for the HTTR facility because the maximum seismic acceleration observed at the HTTR exceeded the maximum value of design basis earthquake. The concept of comprehensive integrity evaluation is divided into two parts. One is the "visual inspection of equipment and instruments". The other is the "seismic response analysis" for the building structure, equipment and instruments using the observed earthquake. All equipment and instruments related to operation were inspected in the basic inspection. The integrity of the facilities was confirmed by comparing the inspection results or the numerical results with their evaluation criteria. As the results of inspection of equipment and instruments associated with the seismic response analysis, it was judged that there was no problem for operation of the reactor, because there was no damage and performance deterioration. The integrity of HTTR was also supported by the several operations without reactor power in cold conditions of HTTR in 2011, 2013 and 2015. Additionally, the integrity of control rod guide blocks was also confirmed visually when three control rod guide blocks and six replaceable reflector blocks were taken out from reactor core in order to change neutron startup sources in 2015.

Journal Articles

Investigation of countermeasure against local temperature rise in vessel cooling system in loss of core cooling test without nuclear heating

Ono, Masato; Shimizu, Atsushi; Kondo, Makoto; Shimazaki, Yosuke; Shinohara, Masanori; Tochio, Daisuke; Iigaki, Kazuhiko; Nakagawa, Shigeaki; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 2(4), p.044502_1 - 044502_4, 2016/10

In the loss of forced core cooling test using High Temperature engineering Test Reactor (HTTR), the forced cooling of reactor core is stopped without inserting control rods into the core and cooling by Vessel Cooling System (VCS) to verify safety evaluation codes to investigate the inherent safety of HTGR be secured by natural phenomena to make it possible to design a severe accident free reactor. The VCS passively removes the retained residual heat and the decay heat from the core via the reactor pressure vessel by natural convection and thermal radiation. In the test, the local temperature was supposed to exceed the limit from the viewpoint of long-term use at the uncovered water cooling tube by thermal reflectors in the VCS, although the safety of reactor is kept. Through a cold test, which was carried out by non-nuclear heat input from gas circulators with stopping water flow in the VCS, the local higher temperature position was specified although the temperature was sufficiently lower than the maximum allowable working temperature, and natural circulation of water had insufficient cooling effect on the temperature of water cooling tube below 1$$^{circ}$$C. Then, a new safe and secured procedure for the loss of forced core cooling test was established, which will be carried out soon after the restart of HTTR.

Journal Articles

Confirmation of seismic integrity of HTTR against 2011 Great East Japan Earthquake

Ono, Masato; Iigaki, Kazuhiko; Shimazaki, Yosuke; Shimizu, Atsushi; Inoi, Hiroyuki; Tochio, Daisuke; Hamamoto, Shimpei; Nishihara, Tetsuo; Takada, Shoji; Sawa, Kazuhiro; et al.

Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 12 Pages, 2016/06

On March 11th, 2011, the Great East Japan Earthquake of magnitude 9.0 occurred. When the great earthquake occurred, the HTTR had been stopped under the periodic inspection and maintenance of equipment and instrument. In the great earthquake, the maximum seismic acceleration observed at the HTTR exceeded the maximum value in seismic design. The visual inspection of HTTR facility was carried out for the seismic integrity conformation of HTTR. The seismic analysis was also carried out using the observed earthquake motion at HTTR site to confirm the integrity of HTTR. The concept of comprehensive integrity evaluation for the HTTR facility is divided into two parts. One is the inspection of equipment and instrument. The other is the seismic response analysis using the observed earthquake. For the basic inspections of equipment and instrument were performed for all them related to the operation of reactor. The integrity of the facilities is confirmed by comparing the inspection results or the numerical results with their evaluation criteria. As the result of inspection of equipment and instrument and seismic response analysis, it was judged that there was no problem to operate the reactor, because there was no damage and performance deterioration, which affects the reactor operation. The integrity of HTTR was also supported by the several operations without reactor power in cold conditions of HTTR in 2011, 2013 and 2015.

Journal Articles

Evaluation on seismic integrity of HTTR core components

Ono, Masato; Iigaki, Kazuhiko; Shimazaki, Yosuke; Tochio, Daisuke; Shimizu, Atsushi; Inoi, Hiroyuki; Hamamoto, Shimpei; Takada, Shoji; Sawa, Kazuhiro

Proceedings of International Topical Meeting on Research Reactor Fuel Management and Meeting of the International Group on Reactor Research (RRFM/IGORR 2016) (Internet), p.363 - 371, 2016/03

HTTR is graphite moderated and helium gas-cooled reactor with prismatic fuel elements and hexagonal blocks. Here, the graphite block is brittle materials and might be damaged by collision of neighboring blocks by the large earthquake. A seismic observation system is installed in the HTTR site to confirm a behavior of a seismic event. On March 11th, 2011, off the Pacific coast of Tohoku Earthquake of magnitude 9.0 occurred. After the accident at the TEPCO Fukushima Daiichi Nuclear Power Station, the safety of nuclear reactors is the highest importance. To confirm the seismic integrity of HTTR core components, the seismic analysis was carried out using the evaluation waves based on the relationship between the observed earthquake motion at HTTR site and frequency transfer function. In parallel, confirmation tests of primary cooling system on cold state and integrity confirmation of reactor buildings and component support structures were also carried out. As a result, it was found that a stress value of the graphite blocks satisfied an allowable value, and the integrity of the HTTR core components was ensured. The integrity of HTTR core components was also supported by the operation without reactor power in cold conditions of HTTR. The obtained data was compared with the normal plant data before the earthquake. As the result, the integrity of the HTTR facilities was confirmed.

Journal Articles

22A beam production of the uniform negative ions in the JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Grisham, L. R.*; Hatayama, Akiyoshi*; Shibata, Takanori*; Yamamoto, Takashi*; Akino, Noboru; Endo, Yasuei; et al.

Fusion Engineering and Design, 96-97, p.616 - 619, 2015/10

 Times Cited Count:11 Percentile:67.6(Nuclear Science & Technology)

In JT-60 Super Advanced for the fusion experiment, 22A, 100s negative ions are designed to be extracted from the world largest ion extraction area of 450 mm $$times$$ 1100 mm. One of the key issues for producing such as high current beams is to improve non-uniform production of the negative ions. In order to improve the uniformity of the negative ions, a tent-shaped magnetic filter has newly been developed and tested for JT-60SA negative ion source. The original tent-shaped filter significantly improved the logitudunal uniformity of the extracted H$$^{-}$$ ion beams. The logitudinal uniform areas within a $$pm$$10 deviation of the beam intensity were improved from 45% to 70% of the ion extraction area. However, this improvement degrades a horizontal uniformity. For this, the uniform areas was no more than 55% of the total ion extraction area. In order to improve the horizontal uniformity, the filter strength has been reduced from 660 Gasus$$cdot$$cm to 400 Gasus$$cdot$$cm. This reduction improved the horizontal uniform area from 75% to 90% without degrading the logitudinal uniformity. This resulted in the improvement of the uniform area from 45% of the total ion extraction areas. This improvement of the uniform area leads to the production of a 22A H$$^{-}$$ ion beam from 450 mm $$times$$ 1100 mm with a small amount increase of electron current of 10%. The obtained beam current fulfills the requirement for JT-60SA.

Journal Articles

Progress in long-pulse production of powerful negative ion beams for JT-60SA and ITER

Kojima, Atsushi; Umeda, Naotaka; Hanada, Masaya; Yoshida, Masafumi; Kashiwagi, Mieko; Tobari, Hiroyuki; Watanabe, Kazuhiro; Akino, Noboru; Komata, Masao; Mogaki, Kazuhiko; et al.

Nuclear Fusion, 55(6), p.063006_1 - 063006_9, 2015/06

 Times Cited Count:38 Percentile:89.6(Physics, Fluids & Plasmas)

Significant progresses in the extension of pulse durations of powerful negative ion beams have been made to realize the neutral beam injectors for JT-60SA and ITER. In order to overcome common issues of the long pulse production/acceleration of negative ion beams in JT-60SA and ITER, the new technologies have been developed in the JT-60SA ion source and the MeV accelerator in Japan Atomic Energy Agency. As for the long pulse production of high-current negative ions for JT-60SA ion source, the pulse durations have been successfully increased from 30 s at 13 A on JT-60U to 100 s at 15 A by modifying the JT-60SA ion source, which satisfies the required pulse duration of 100 s and 70% of the rated beam current for JT-60SA. This progress was based on the R&D efforts for the temperature control of the plasma grid and uniform negative ion productions with the modified tent-shaped filter field configuration. Moreover, the each parameter of the required beam energy, current and pulse has been achieved individually by these R&D efforts. The developed techniques are useful to design the ITER ion source because the sustainment of the cesium coverage in large extraction area is one of the common issues between JT-60SA and ITER. As for the long pulse acceleration of high power density beams in the MeV accelerator for ITER, the pulse duration of MeV-class negative ion beams has been extended by more than 2 orders of magnitude by modifying the extraction grid with a high cooling capability and a high-transmission of negative ions. A long pulse acceleration of 60 s has been achieved at 70 MW/m$$^{2}$$ (683 keV, 100 A/m$$^{2}$$) which has reached to the power density of JT-60SA level of 65 MW/m$$^{2}$$.

Journal Articles

Investigation of characteristics of natural circulation of water in vessel cooling system in loss of core cooling test without nuclear heating

Takada, Shoji; Shimizu, Atsushi; Kondo, Makoto; Shimazaki, Yosuke; Shinohara, Masanori; Seki, Tomokazu; Tochio, Daisuke; Iigaki, Kazuhiko; Nakagawa, Shigeaki; Sawa, Kazuhiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05

In the loss of forced core cooling test using High Temperature engineering Test Reactor (HTTR), the forced cooling of reactor core is stopped without inserting control rods into the core and cooling by Vessel Cooling System (VCS) to demonstrate the inherent safety of HTGR be secured by natural phenomena to make it possible to design a severe accident free reactor. In the test, the local temperature was supposed to exceed the limit from the viewpoint of long-term use at the uncovered water cooling tube by thermal reflectors in the VCS, although the safety of reactor is kept. The local higher temperature position was specified although the temperature was sufficiently lower than the maximum allowable working temperature, and natural circulation of water had insufficient cooling effect on the temperature of water cooling tube below 1$$^{circ}$$C. Then, a new safe and secured procedure for the loss of forced core cooling test was established, which will be carried out soon after the restart of HTTR.

JAEA Reports

Disassembly of the NBI system on JT-60U for JT-60 SA

Akino, Noboru; Endo, Yasuei; Hanada, Masaya; Kawai, Mikito*; Kazawa, Minoru; Kikuchi, Katsumi*; Kojima, Atsushi; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; et al.

JAEA-Technology 2014-042, 73 Pages, 2015/02

JAEA-Technology-2014-042.pdf:15.1MB

According to the project plan of JT-60 Super Advanced that is implemented as an international project between Japan and Europe, the neutral beam (NB) injectors have been disassembled. The disassembly of the NB injectors started in November, 2009 and finished in January, 2012 without any serious problems as scheduled. This reports the disassembly activities of the NB injectors.

Journal Articles

A Safety evaluation of HTTR core graphite structures against the Great East Japan Earthquake

Iigaki, Kazuhiko; Ono, Masato; Shimazaki, Yosuke; Tochio, Daisuke; Shimizu, Atsushi; Inoi, Hiroyuki; Takada, Shoji; Sawa, Kazuhiro

Mechanical Engineering Journal (Internet), 1(4), p.TEP0021_1 - TEP0021_13, 2014/08

On March 11th, 2011, the Great East Japan Earthquake which is one of the largest earthquakes in Japan occurred and the maximum acceleration in observed seismic wave in the HTTR exceeded the design value in a part of input seismic motions. Therefore, a visual inspection, a seismic analysis and a performance confirmation test of facilities were carried out in order to confirm the integrity of facility after the earthquake. The seismic analysis was carried out for the reactor core structures by using the response magnification factor method. As the results of the evaluation, the generated stress in the graphite blocks in the reactor core at the earthquake were well below the allowable values of safety criteria, and thus the structural integrity of the reactor core was confirmed. The integrity of reactor core was also supported by the visual inspections of facilities and the operation without reactor power in cold conditions of HTTR.

97 (Records 1-20 displayed on this page)