Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 20
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Non-destructive examination of jacket sections for ITER central solenoid conductors

Takahashi, Yoshikazu; Suwa, Tomone; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 25(3), p.4200904_1 - 4200904_4, 2015/06

 Times Cited Count:3 Percentile:20.23(Engineering, Electrical & Electronic)

The Japan Atomic Energy Agency (JAEA) is responsible for procuring all amounts of Central Solenoid (CS) Conductors for ITER, including CS jacket sections. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A total of 576 Nb$$_{3}$$Sn strands and 288 copper strands are cabled around the central spiral. The maximum operating current is 40 kA at magnetic field of 13 T. CS jacket section is circular in square type tube made of JK2LB, which is high manganese stainless steel with boron added. Unit length of jacket sections is 7 m and 6,300 sections will be manufactured and inspected. Outer/inner dimension and weight are 51.3/35.3 mm and around 90 kg, respectively. Eddy Current Test (ECT) and Phased Array Ultrasonic Test (PAUT) were developed for non-destructive examination. The defects on inner and outer surfaces can be detected by ECT. The defects inside jacket section can be detected by PAUT. These technology and the inspected results are reported in this paper.

Journal Articles

Behavior of Nb$$_{3}$$Sn cable assembled with conduit for ITER central solenoid

Nabara, Yoshihiro; Suwa, Tomone; Takahashi, Yoshikazu; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Sakurai, Takeru; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; et al.

IEEE Transactions on Applied Superconductivity, 25(3), p.4200305_1 - 4200305_5, 2015/06

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

Journal Articles

Optimization of heat treatment of Japanese Nb$$_3$$Sn conductors for toroidal field coils in ITER

Nabara, Yoshihiro; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Suwa, Tomone; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Koizumi, Norikiyo; et al.

IEEE Transactions on Applied Superconductivity, 24(3), p.6000605_1 - 6000605_5, 2014/06

 Times Cited Count:7 Percentile:39.51(Engineering, Electrical & Electronic)

no abstracts in English

Journal Articles

Cabling technology of Nb$$_3$$Sn conductor for ITER central solenoid

Takahashi, Yoshikazu; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Uno, Yasuhiro; et al.

IEEE Transactions on Applied Superconductivity, 24(3), p.4802404_1 - 4802404_4, 2014/06

 Times Cited Count:25 Percentile:72.88(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) is procuring all amounts of Nb$$_3$$Sn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The original design of cabling twist pitches is 45-85-145-250-450 mm, called normal twist pitch (NTP). The test results of the conductors with NTP was that current shearing temperature (Tcs) is decreasing due to electro-magnetic (EM) load cycles. On the other hand, the results of the conductors with short twist pitches (STP) of 25-45-80-150-450 mm show that the Tcs is stabilized during EM load cyclic tests. Because the conductors with STP have smaller void fraction, higher compaction ratio during cabling is required and possibility of damage on strands increases. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies will be described in this paper.

Journal Articles

Cable twist pitch variation in Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Nabara, Yoshihiro; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Hamada, Kazuya; Matsui, Kunihiro; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 23(3), p.4801504_1 - 4801504_4, 2013/06

 Times Cited Count:11 Percentile:50.58(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) is the first to start the mass production of the TF conductors in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The height and width of the TF coils are 14 m and 9 m, respectively. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A circular multistage superconducting cable is inserted into a circular stainless steel jacket with a thickness of 2 mm. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and the cable is inserted into a round-in-round stainless steel jacket. It was observed that the cabling pitch of the destructive sample is longer than the original pitch at cabling. The JAEA carried out the tensile tests of the cable and the measurement of the cable rotation during the insertion to investigate the cause of the elongation. The cause of elongation was clarified and the results will be described in this paper.

Journal Articles

Development of 7 T Cryogen-free superconducting magnet for gyrotron

Hirose, Ryoichi*; Kamikado, Takeshi*; Okui, Yoshio*; Miyata, Hitoshi*; Shibutani, Kazuyuki*; Ozaki, Osamu*; Sakamoto, Keishi

IEEE Transactions on Applied Superconductivity, 18(2), p.920 - 923, 2008/06

 Times Cited Count:15 Percentile:61.02(Engineering, Electrical & Electronic)

A special type of 7 T 240 mm vertical bore cryogen-free superconducting magnet system was developed. The magnet system consists of three sets of coils which are charged separately. A set of sweep coils are located inside of the main coil. The sweep coil produces only $$pm$$0.2 T but is charged and discharged within 10 seconds so as to control electron trajectory. To avoid quench with the rise of the temperature from the large AC loss, this set of coils are wound with Nb$$_{3}$$Sn conductor. This magnet system will contribute to the fast control of the gyrotron oscillation frequency.

Oral presentation

Mass production technology of ITER conductors; Investigation of twist pitch variation

Takahashi, Yoshikazu; Nabara, Yoshihiro; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Uno, Yasuhiro; Hamada, Kazuya; Shibutani, Kazuyuki*; et al.

no journal, , 

In the ITER project, Japan Atomic Energy Agency (JAEA) is the first to start the mass production of the TF conductors in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The height and width of the TF coils are 14 m and 9 m, respectively. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A circular multistage superconducting cable is inserted into a circular stainless steel jacket with a thickness of 2 mm. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and the cable is inserted into a round-in-round stainless steel jacket. It was observed that the cabling pitch of the destructive sample is longer than the original pitch at cabling. The JAEA carried out the tensile tests of the cable and the measurement of the cable rotation during the insertion to investigate the cause of the elongation. The cause of elongation was clarified and the results will be described in this paper.

Oral presentation

Progress in procurement for ITER superconductors; Development of center solenoid cable

Nunoya, Yoshihiko; Takahashi, Yoshikazu; Nabara, Yoshihiro; Tsutsumi, Fumiaki; Oshikiri, Masayuki; Uno, Yasuhiro; Shibutani, Kazuyuki*; Ishibashi, Tatsuji*; Watanabe, Kazuaki*; Sugimoto, Masahiro*; et al.

no journal, , 

no abstracts in English

Oral presentation

Performance of superconductors for ITER central solenoids

Nabara, Yoshihiro; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Koizumi, Norikiyo; Tsutsumi, Fumiaki; et al.

no journal, , 

no abstracts in English

Oral presentation

Development of Nb$$_{3}$$Sn cables for ITER central solenoid (CS) coil

Takahashi, Yoshikazu; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Uno, Yasuhiro; Shibutani, Kazuyuki*; et al.

no journal, , 

Japan Atomic Energy Agency (JAEA) is procuring all amounts of Nb$$_{3}$$Sn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The original design of cabling twist pitches is 45-85-145-250-450 mm, called normal twist pitch (NTP). The test results of the conductors with NTP was that current shearing temperature (Tcs) is decreasing due to electro-magnetic (EM) load cycles. On the other hand, the results of the conductors with short twist pitches (STP) of 25-45-80-150-450 show that the Tcs is stabilized during EM load cyclic tests. Because the conductors with STP have smaller void fraction, higher compaction ratio during cabling is required and possibility of damage on strands increases. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies will be described in this paper.

Oral presentation

Performance examination of Nb$$_3$$Sn superconductor for ITER CS coil

Nabara, Yoshihiro; Suwa, Tomone; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Sakurai, Takeru; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; et al.

no journal, , 

no abstracts in English

Oral presentation

Development and production of cables for ITER

Takahashi, Yoshikazu; Nabara, Yoshihiro; Nunoya, Yoshihiko; Suwa, Tomone; Tsutsumi, Fumiaki; Oshikiri, Masayuki; Ozeki, Hidemasa; Shibutani, Kazuyuki*; Kawano, Katsumi; Kawasaki, Tsutomu*; et al.

no journal, , 

Japan Atomic Energy Agency (JAEA) is procuring all amounts of Nb$$_{3}$$Sn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The cable with a shorter twist pitch shows no degradation of Tcs against to electromagnetic load cycles. However, it is difficult to make the cable, because the diameter of the cable with shorter twist pitch is larger and the cable has to compact more. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies and production will be described in this paper.

Oral presentation

Technical problem and resolution of superconductor for the ITER magnet

Nunoya, Yoshihiko; Nabara, Yoshihiro; Takahashi, Yoshikazu; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Takamura, Jun; Chuheishi, Shinji; Shibutani, Kazuyuki*

no journal, , 

Japan Atomic Energy Agency is responsible for Nb$$_{3}$$Sn Cable-in-Conduit conductors or the Central Solenoid (CS) and the Toroidal Field (TF) coil under the ITER project. Full-size conductor test was performed to confirm performance using SULTAN facility at Switzerland, especially effect of electromagnetic load cycles on the current sharing temperature (Tcs). The original (reference) conductor which had relatively long twist pitch cabling design is called as the normal twist pitch (NTP) conductor. NTP conductor showed Tcs decrease with increasing the number of cycles. By introducing short twist pitch conductor, performance during electromagnetic cycles was improved and concern of Tcs decrease in ITER CS is eliminated. Improvement is understood that shorting pitch of the triplet in the first stage make more engagement of strand providing more stiffness of the cable that prevent strand deformation like buckling observed in the destructive examination of the previous SULTAN sample.

Oral presentation

Progress of ITER conductor fabrication

Nunoya, Yoshihiko; Takahashi, Yoshikazu; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Nabara, Yoshihiro; Takamura, Jun; Chuheishi, Shinji; Shibutani, Kazuyuki*; Suwa, Tomone; Matsuda, Hidemitsu*

no journal, , 

no abstracts in English

Oral presentation

Non-destructive examination of jacket sections for ITER central solenoid (CS) coil

Takahashi, Yoshikazu; Suwa, Tomone; Nabara, Yoshihiro; Ozeki, Hidemasa; Nunoya, Yoshihiko; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Takamura, Jun; Shibutani, Kazuyuki*; Chuheishi, Shinji; et al.

no journal, , 

The Japan Atomic Energy Agency (JAEA) is responsible for procuring all amounts of Central Solenoid (CS) Conductors for ITER, including CS jacket sections. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A total of 576 Nb$$_{3}$$Sn strands and 288 copper strands are cabled around the central spiral. The maximum operating current is 40 kA at magnetic field of 13 T. CS jacket section is circular in square type tube made of JK2LB, which is high manganese stainless steel with boron added. Unit length of jacket sections is 7 m and 6,300 sections will be manufactured and inspected. Outer/inner dimension and weight are 51.3/35.3 mm and around 90 kg, respectively. Eddy Current Test (ECT) and Phased Array Ultrasonic Test (PAUT) were developed for non-destructive examination. The defects on inner and outer surfaces can be detected by ECT. The defects inside jacket section can be detected by PAUT. These technology and the inspected results are reported in this paper.

Oral presentation

Degradation of critical current on Nb$$_{3}$$Sn strands with deformation before heat treatment

Suwa, Tomone; Nabara, Yoshihiro; Nunoya, Yoshihiko; Takahashi, Yoshikazu; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Shibutani, Kazuyuki*; Murakami, Yukinobu*; Miyashita, Katsumi*; Sim, K.-H.*; et al.

no journal, , 

no abstracts in English

Oral presentation

Status of ITER superconductor fabrication

Nunoya, Yoshihiko; Suwa, Tomone; Takahashi, Yoshikazu; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Chuheishi, Shinji; Shibutani, Kazuyuki*

no journal, , 

no abstracts in English

Oral presentation

Performance of mass-produced superconductor for ITER central solenoid

Nabara, Yoshihiro; Suwa, Tomone; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Sakurai, Takeru; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; et al.

no journal, , 

no abstracts in English

Oral presentation

Twist pitch distribution in the Central Solenoid cable during insertion into the conduit

Suwa, Tomone; Nabara, Yoshihiro; Takahashi, Yoshikazu; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Shibutani, Kazuyuki*; Sekiguchi, Nobuo*; Matsuda, Hidemitsu*

no journal, , 

no abstracts in English

Oral presentation

Procurement status of ITER central solenoid superconductors

Nabara, Yoshihiro; Suwa, Tomone; Ozeki, Hidemasa; Sakurai, Takeru; Kajitani, Hideki; Iguchi, Masahide; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; et al.

no journal, , 

no abstracts in English

20 (Records 1-20 displayed on this page)
  • 1