Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 26

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of nondestructive elemental analysis system for Hayabusa2 samples using muonic X-rays

Osawa, Takahito; Nagasawa, Shunsaku*; Ninomiya, Kazuhiko*; Takahashi, Tadayuki*; Nakamura, Tomoki*; Wada, Taiga*; Taniguchi, Akihiro*; Umegaki, Izumi*; Kubo, Kenya*; Terada, Kentaro*; et al.

ACS Earth and Space Chemistry (Internet), 7(4), p.699 - 711, 2023/04

 Times Cited Count:4 Percentile:93.95(Chemistry, Multidisciplinary)

The concentrations of carbon and other major elements in asteroid samples provide very important information on the birth of life on the Earth and the solar-system evolution. Elemental analysis using muonic X-rays is one of the best analytical methods to determine the elemental composition of solid materials, and notably, is the only method to determine the concentration of light elements in bulk samples in a non-destructive manner. We developed a new analysis system using muonic X-rays to measure the concentrations of carbon and other major elements in precious and expectedly tiny samples recovered from the asteroid Ryugu by spacecraft Hayabusa2. Here we report the development process of the system in 4 stages and their system configurations, The analysis system is composed of a stainless-steel analysis chamber, an acrylic glove box for manipulating asteroid samples in a clean environment, and Ge semiconductor detectors arranged to surround the analysis chamber. The performance of the analysis system, including the background level, which is crucial for the measurement, was greatly improved from the first stage to the later ones. Our feasibility study showed that the latest model of our muonic X-ray analysis system is capable of determining the carbon concentration in Hayabusa2's sample model with an uncertainty of less than 10 percent in a 6-day measurement.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:6 Percentile:84.97(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Improving the safety of the high temperature gas-cooled reactor "HTTR" based on Japan's new regulatory requirements

Hamamoto, Shimpei; Shimizu, Atsushi; Inoi, Hiroyuki; Tochio, Daisuke; Homma, Fumitaka; Sawahata, Hiroaki; Sekita, Kenji; Watanabe, Shuji; Furusawa, Takayuki; Iigaki, Kazuhiko; et al.

Nuclear Engineering and Design, 388, p.111642_1 - 111642_11, 2022/03

 Times Cited Count:2 Percentile:53.91(Nuclear Science & Technology)

Following the Fukushima Daiichi Nuclear Power Plant accident in 2011, the Japan Atomic Energy Agency adapted High-Temperature engineering Test Reactor (HTTR) to meet the new regulatory requirements that began in December 2013. The safety and seismic classifications of the existing structures, systems, and components were discussed to reflect insights regarding High Temperature Gas-cooled Reactors (HTGRs) that were acquired through various HTTR safety tests. Structures, systems, and components that are subject to protection have been defined, and countermeasures to manage internal and external hazards that affect safety functions have been strengthened. Additionally, measures are in place to control accidents that may cause large amounts of radioactive material to be released, as a beyond design based accident. The Nuclear Regulatory Commission rigorously and appropriately reviewed this approach for compliance with the new regulatory requirements. After nine amendments, the application to modify the HTTR's installation license that was submitted in November 2014 was approved in June 2020. This response shows that facilities can reasonably be designed to meet the enhanced regulatory requirements, if they reflect the characteristics of HTGRs. We believe that we have established a reference for future development of HTGR.

Journal Articles

Dynamical response of transition-edge sensor microcalorimeters to a pulsed charged-particle beam

Okumura, Takuma*; Azuma, Toshiyuki*; Bennet, D. A.*; Caradonna, P.*; Chiu, I.-H.*; Doriese, W. B.*; Durkin, M. S.*; Fowler, J. W.*; Gard, J. D.*; Hashimoto, Tadashi; et al.

IEEE Transactions on Applied Superconductivity, 31(5), p.2101704_1 - 2101704_4, 2021/08

 Times Cited Count:1 Percentile:11.15(Engineering, Electrical & Electronic)

A superconducting transition-edge sensor (TES) microcalorimeter is an ideal X-ray detector for experiments at accelerator facilities because of good energy resolution and high efficiency. To study the performance of the TES detector with a high-intensity pulsed charged-particle beam, we measured X-ray spectra with a pulsed muon beam at the Japan Proton Accelerator Research Complex (J-PARC) in Japan. We found substantial temporal shifts of the X-ray energy correlated with the arrival time of the pulsed muon beam, which was reasonably explained by pulse pileup due to the incidence of energetic particles from the initial pulsed beam.

Journal Articles

Deexcitation dynamics of muonic atoms revealed by high-precision spectroscopy of electronic $$K$$ X rays

Okumura, Takuma*; Azuma, Toshiyuki*; Bennet, D. A.*; Caradonna, P.*; Chiu, I. H.*; Doriese, W. B.*; Durkin, M. S.*; Fowler, J. W.*; Gard, J. D.*; Hashimoto, Tadashi; et al.

Physical Review Letters, 127(5), p.053001_1 - 053001_7, 2021/07

 Times Cited Count:13 Percentile:79.44(Physics, Multidisciplinary)

We observed electronic $$K$$X rays emitted from muonic iron atoms using a superconducting transition-edge-type sensor microcalorimeter. The energy resolution of 5.2 eV in FWHM allowed us to observe the asymmetric broad profile of the electronic characteristic $$K$$$$alpha$$ and $$K$$$$beta$$ X rays together with the hypersatellite $$K$$$$alpha$$ X rays around 6 keV. This signature reflects the time-dependent screening of the nuclear charge by the negative muon and the $$L$$-shell electrons, accompanied by electron side-feeding. Assisted by a simulation, this data clearly reveals the electronic $$K$$- and $$L$$-shell hole production and their temporal evolution during the muon cascade process.

JAEA Reports

Data of radon measurement in underground facilities of Mizunami Underground Research Laboratory

Aoki, Katsunori; Yamanaka, Hiroki*; Watanabe, Kazuhiko*; Sugihara, Kozo

JAEA-Data/Code 2020-018, 45 Pages, 2021/02

JAEA-Data-Code-2020-018.pdf:4.54MB
JAEA-Data-Code-2020-018-appendix(DVD-ROM).zip:6.8MB

Mizunami Underground Research Laboratory (MIU) Project is pursued by Japan Atomic Energy Agency (JAEA) in the crystalline host rock (granite) as a part of geoscientific study of JAEA, and underground facilities of MIU are constructed down to 500m blow the ground surface. As small amount of Uranium is normally contained in granite, high concentration of radon is sometimes detected in the air of the underground facilities constructed in granitic rocks depending on their ventilation conditions. Radon concentrations in underground facilities of MIU have been measured according to the excavation progress of underground facilities or the change of ventilation system. It is recognized that the data obtained by the actual measurement of radon concentration in such underground facilities are rare and valuable. This repot summarizes the measured data from fiscal 2010 to fiscal 2020, together with the information of ventilation conditions and air temperature which affect radon concentrations in underground facilities. The variation of the equilibrium factors of radon is also examined with the actually measured data. As a result, it has been found that radon concentration in the drift is high in summer and low in winter according to the natural ventilation caused by the seasonal temperature difference between in and out of the underground facilities. Furthermore, the temporary increase in the equilibrium factor of radon in the drift at the start of ventilation is supposed to be due to the aerosol increase by the ventilation flow, such as the dust blown up.

Journal Articles

Result of seismic motion observation from ground surface to 500m depth at Mizunami Underground Research Laboratory and its detailed analysis

Matsui, Hiroya; Watanabe, Kazuhiko*; Mikake, Shinichiro; Niimi, Katsuyuki*; Kobayashi, Shinji*; Toguri, Satohito*

Dai-47-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (Internet), p.293 - 298, 2020/01

Japan Atomic Energy Agency has been observed seismic motions induced by earthquakes, at ground surface, galleries at 100m, 300m and 500m depth of Mizunami underground research laboratory for over 10 years. The results suggested that the amplitude of the seismic motion decreases with depth as the previous study on crystalline rock at Kamaishi mine indicated. Detailed analysis on the observed seismic motions shows that the Fourier amplitude and the phase difference of the earthquake occurred near epicenter correspond with the one calculated by one-dimensional multiple reflection theory.

Journal Articles

Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex, 3; Neutron devices and computational and sample environments

Sakasai, Kaoru; Sato, Setsuo*; Seya, Tomohiro*; Nakamura, Tatsuya; To, Kentaro; Yamagishi, Hideshi*; Soyama, Kazuhiko; Yamazaki, Dai; Maruyama, Ryuji; Oku, Takayuki; et al.

Quantum Beam Science (Internet), 1(2), p.10_1 - 10_35, 2017/09

Neutron devices such as neutron detectors, optical devices including supermirror devices and $$^{3}$$He neutron spin filters, and choppers are successfully developed and installed at the Materials Life Science Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC), Tokai, Japan. Four software components of MLF computational environment, instrument control, data acquisition, data analysis, and a database, have been developed and equipped at MLF. MLF also provides a wide variety of sample environment options including high and low temperatures, high magnetic fields, and high pressures. This paper describes the current status of neutron devices, computational and sample environments at MLF.

JAEA Reports

Mizunami Underground Research Laboratory Project; Compilation of results of geological investigation at the -500m stage

Kawamoto, Koji; Murakami, Hiroaki; Ishibashi, Masayuki; Sasao, Eiji; Watanabe, Kazuhiko; Mikake, Shinichiro; Ikeda, Koki

JAEA-Data/Code 2014-014, 27 Pages, 2014/08

JAEA-Data-Code-2014-014.pdf:24.28MB
JAEA-Data-Code-2014-014-appendix(CD-ROM).zip:92.23MB

This document presents the data of geological investigations at the -500m stage of the MIU from the 2011 fiscal year to the 2013 fiscal year. At the -500m stage of the MIU, although the Cretaceous Toki granite is distributed, pegmatite, aplite and lampropyre dike are distributed partially.

JAEA Reports

Results of pilot borehole investigation in -500m access/research gallery-south (12MI32 borehole)

Kawamoto, Koji; Kuroiwa, Hiroshi; Yamada, Nobuto; Onuki, Kenji; Omori, Kazuaki; Takeuchi, Ryuji; Ogata, Nobuhisa; Omori, Masaki; Watanabe, Kazuhiko

JAEA-Technology 2014-011, 92 Pages, 2014/07

JAEA-Technology-2014-011.pdf:24.65MB
JAEA-Technology-2014-011-appendix(DVD).zip:331.54MB

This document summarizes the data of pilot boreholes (12MI32) in the -500m Access/Research Gallery-South. The geological, hydraulic and geochemical data were obtained. In addition, groundwater monitoring system was installed to observe the groundwater pressure in initial condition and change during the excavation of gallery. The results of investigation, biotite granite with medium to coarse-grained equigranular texture are characterized. Rock mass classification is B from CM class. Minor fault with fault breccia are observed around 48.90mabh. However, S200_13 fault and IF_SB3_13_3 fault (that were presumed by an original model) were not observed. Density of fracture is large in the section of 40.00 to 80.00mabh. Water inflow was a maximum of 600 L/min in 78.83mabh. Permeability ranges from 2.0E-9 to 1.5E-08m/sec at the zone with low inflow, from 1.1E-05 to 1.6E-05m/sec at the zone with high inflow, respectively. Groundwater chemistry is rich in Na and Cl ion.

JAEA Reports

Result and considerations on the pre-excavation grouting below four hundreds meter depth of the ventilation shaft

Ishii, Yoji; Watanabe, Kazuhiko; Kamiya, Akira; Hayano, Akira; Mikake, Shinichiro; Takeuchi, Shinji; Ikeda, Koki; Yamamoto, Masaru; Sugihara, Kozo

JAEA-Technology 2010-044, 92 Pages, 2011/02

JAEA-Technology-2010-044.pdf:11.73MB

The "Mizunami Underground Research Laboratory" has been carrying out scientific research in granite to establish the technological basis for high-level radioactive waste disposal. To get reliable information on the rock mass geology and hydrogeology and on the bedrock conditions, a pilot borehole investigation was carried out before sinking the ventilation shaft. During this investigation, a zone with high hydraulic head and low hydraulic conductivity was observed at around GL-400m. To reduce water inflow during excavation, pre-excavation grouting with micro-fine cement was done in this region before sinking the Ventilation Shaft. Despite the high hydraulic head and the low hydraulic conductivity, effective reduction of water-inflow was achieved.

Journal Articles

Pre-excavation grouting with micro-fine cement below four hundreds meter depth

Ishii, Yoji; Mikake, Shinichiro; Kamiya, Akira; Watanabe, Kazuhiko; Nobuto, Jun*; Kusano, Takashi*

Dai-40-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koen Rombunshu (CD-ROM), p.185 - 190, 2011/01

The "Mizunami Underground Research Laboratory" has been carrying out scientific research in granite to establish the technological basis for high-level radioactive waste disposal. To get reliable information on the rock mass geology and hydrogeology and on the bedrock conditions, a pilot borehole investigation was carried out before sinking the Ventilation Shaft. A region with high hydraulic head and low hydraulic conductivity was intersected by the pilot borehole at around GL-400m during these investigations. To reduce water inflow during excavation, pre-excavation grouting with micro-fine cement was done in this region before sinking the ventilation shaft. Despite the high hydraulic head and the low hydraulic conductivity, effective reduction of water-inflow was achieved.

Journal Articles

An Experimental validation of the guideline for inelastic design analysis through structural model tests

Watanabe, Daigo*; Chuman, Yasuharu*; Otani, Tomomi*; Shibamoto, Hiroshi*; Inoue, Kazuhiko*; Kasahara, Naoto

Nuclear Engineering and Design, 238(2), p.389 - 398, 2008/02

 Times Cited Count:5 Percentile:35.07(Nuclear Science & Technology)

In this paper, the inelastic analysis procedures for the improved design of future fast breeder reactors were validated through the structural model tests and the evaluation of the experimental results by the inelastic analyses. First, a thermal fatigue test of a 316FR hollow cylinder with two longitudinal weldments was conducted under the condition of combined constant axial load and cyclic movement of axial temperature distribution, which simulated the loading condition near the free surface of coolant sodium in the main vessel of fast breeder reactors (FBRs). Second, the inelastic analyses were carried out in accordance with the recommended procedure by using the measured results of oscillating temperature distribution. Finally, the results of inelastic analyses were compared with the experimental results and it was validated that the recommended practice gave a conservative result for the deformation and a good estimation of strain range for the fatigue life evaluation.

Journal Articles

Measurement of thermal ratcheting strain on the structures by the laser speckle method

Watanabe, Daigo*; Chuman, Yasuharu*; Otani, Tomomi*; Shibamoto, Hiroshi; Inoue, Kazuhiko*; Kasahara, Naoto

Proceedings of 2006 ASME Pressure Vessels and Piping Division Conference (PVP 2006)/International Council on Pressure Vessel Technology (ICPVT-11) (CD-ROM), 7 Pages, 2006/00

Prevention of thermal ratcheting is an important problem for high temperature components of fast breeder reactors that are subjected to cyclic thermal loads. To clarify ratcheting behaviors, structural model tests were planned. Strain measurement is important for understanding the thermal ratcheting phenomenon, however the conventional measurement by strain gauge is difficult at high temperature. Then, Laser speckle strain measurement system using the dual-beam set-up was developed to apply to high temperature structural model tests. This system was applied to the thermal ratcheting tests, which demonstrated the actual operative conditions of reactor vessels. Through comparison with uniaxial test results obtained by extensometers, the laser speckle method was verified. Measured data of structural model tests were utilized to certify the guidelines of inelastic analysis for design, which provide prediction method of strain in components of fast reactor.

Journal Articles

The Harmonic current control for DTQ power supplies to high intensity proton Linac

Hori, Toshihiko*; Ito, Takashi; Chishiro, Etsuji; Izumi, Keisuke*; Yamazaki, Masayoshi*; Watanabe, Kazuhiko*; Takasaki, Eiichi*; Hasegawa, Kazuo; Yoshikawa, Hiroshi

Proceedings of 27th Linear Accelerator Meeting in Japan, p.255 - 257, 2002/08

no abstracts in English

Journal Articles

Effect of fractionated exposure to carbon ions on the frequency of chromosome aberrations in tobacco root cells

Shimono, Kazuhiko*; Shikazono, Naoya; Inoue, Masayoshi*; Tanaka, Atsushi; Watanabe, Hiroshi

Radiation and Environmental Biophysics, 40(3), p.221 - 225, 2001/09

 Times Cited Count:8 Percentile:28.36(Biology)

no abstracts in English

Journal Articles

Biological effects of ion beams in nicotiana tabacum L.

Hase, Yoshihiro; Shimono, Kazuhiko*; Inoue, Masayoshi*; Tanaka, Atsushi; Watanabe, Hiroshi

Radiation and Environmental Biophysics, 38(2), p.111 - 115, 1999/07

 Times Cited Count:35 Percentile:73.28(Biology)

no abstracts in English

Journal Articles

Recent developments in the JT-60 data processing system

Matsuda, Toshiaki; Aoyagi, Tetsuo*; ; Tsugita, Tomonori; Oshima, Takayuki; Sakata, Shinya; Sato, Minoru; *; Koiwa, Motonao*

Fusion Engineering and Design, 43(3-4), p.285 - 291, 1999/00

 Times Cited Count:8 Percentile:53.62(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

None

*; ; ; Watanabe, Fumitaka

JNC TY1520 98-001, 72 Pages, 1998/10

JNC-TY1520-98-001.pdf:2.99MB

no abstracts in English

26 (Records 1-20 displayed on this page)