Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 37

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Structures of magnetic excitations in the spin-$$frac{1}{2}$$ kagome-lattice antiferromagnets Cs$$_{2}$$Cu$$_{3}$$SnF$$_{12}$$ and Rb$$_{2}$$Cu$$_{3}$$SnF$$_{12}$$

Saito, Mutsuki*; Takagishi, Ryunosuke*; Kurita, Nubuyuki*; Watanabe, Masari*; Tanaka, Hidekazu*; Nomura, Ryuji*; Fukumoto, Yoshiyuki*; Ikeuchi, Kazuhiko*; Kajimoto, Ryoichi

Physical Review B, 105(6), p.064424_1 - 064424_15, 2022/02

 Times Cited Count:6 Percentile:73.14(Materials Science, Multidisciplinary)

Journal Articles

Examination of evaluation method for fault activity based on morphological observation of fault planes

Tanaka, Yoshihiro*; Kametaka, Masao*; Okazaki, Kazuhiko*; Suzuki, Kazushige*; Seshimo, Kazuyoshi; Aoki, Kazuhiro; Shimada, Koji; Watanabe, Takahiro; Nakayama, Kazuhiko

Oyo Chishitsu, 59(1), p.13 - 27, 2018/04

This paper aims to develop a methodology for understanding the fault activity by observing exposed fault planes without covering younger strata. Based on purpose, faults developed in relatively homogeneous rocks such granitic types are investigated as follows; Gosuke Dam upstream outcrop of Gosukebashi Fault and Funasaka-nishi outcrop of Rokkou Fault were selected for the study of an active fault; and K-3 outcrop of Rokkou Houraikyo Fault was chosen for a non-active fault.

Journal Articles

Progress in long-pulse production of powerful negative ion beams for JT-60SA and ITER

Kojima, Atsushi; Umeda, Naotaka; Hanada, Masaya; Yoshida, Masafumi; Kashiwagi, Mieko; Tobari, Hiroyuki; Watanabe, Kazuhiro; Akino, Noboru; Komata, Masao; Mogaki, Kazuhiko; et al.

Nuclear Fusion, 55(6), p.063006_1 - 063006_9, 2015/06

 Times Cited Count:41 Percentile:89.45(Physics, Fluids & Plasmas)

Significant progresses in the extension of pulse durations of powerful negative ion beams have been made to realize the neutral beam injectors for JT-60SA and ITER. In order to overcome common issues of the long pulse production/acceleration of negative ion beams in JT-60SA and ITER, the new technologies have been developed in the JT-60SA ion source and the MeV accelerator in Japan Atomic Energy Agency. As for the long pulse production of high-current negative ions for JT-60SA ion source, the pulse durations have been successfully increased from 30 s at 13 A on JT-60U to 100 s at 15 A by modifying the JT-60SA ion source, which satisfies the required pulse duration of 100 s and 70% of the rated beam current for JT-60SA. This progress was based on the R&D efforts for the temperature control of the plasma grid and uniform negative ion productions with the modified tent-shaped filter field configuration. Moreover, the each parameter of the required beam energy, current and pulse has been achieved individually by these R&D efforts. The developed techniques are useful to design the ITER ion source because the sustainment of the cesium coverage in large extraction area is one of the common issues between JT-60SA and ITER. As for the long pulse acceleration of high power density beams in the MeV accelerator for ITER, the pulse duration of MeV-class negative ion beams has been extended by more than 2 orders of magnitude by modifying the extraction grid with a high cooling capability and a high-transmission of negative ions. A long pulse acceleration of 60 s has been achieved at 70 MW/m$$^{2}$$ (683 keV, 100 A/m$$^{2}$$) which has reached to the power density of JT-60SA level of 65 MW/m$$^{2}$$.

Journal Articles

Progress in development and design of the neutral beam injector for JT-60SA

Hanada, Masaya; Kojima, Atsushi; Tanaka, Yutaka; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; et al.

Fusion Engineering and Design, 86(6-8), p.835 - 838, 2011/10

 Times Cited Count:13 Percentile:69.64(Nuclear Science & Technology)

Neutral beam (NB) injectors for JT-60 Super Advanced (JT-60SA) have been designed and developed. Twelve positive-ion-based and one negative-ion-based NB injectors are allocated to inject 30 MW D$$^{0}$$ beams in total for 100 s. Each of the positive-ion-based NB injector is designed to inject 1.7 MW for 100s at 85 keV. A part of the power supplies and magnetic shield utilized on JT-60U are upgraded and reused on JT-60SA. To realize the negative-ion-based NB injector for JT-60SA where the injection of 500 keV, 10 MW D$$^{0}$$ beams for 100s is required, R&Ds of the negative ion source have been carried out. High-energy negative ion beams of 490-500 keV have been successfully produced at a beam current of 1-2.8 A through 20% of the total ion extraction area, by improving voltage holding capability of the ion source. This is the first demonstration of a high-current negative ion acceleration of $$>$$1 A to 500 keV. The design of the power supplies and the beamline is also in progress. The procurement of the acceleration power supply starts in 2010.

Journal Articles

Development of the JT-60SA Neutral Beam Injectors

Hanada, Masaya; Kojima, Atsushi; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; Kazawa, Minoru; et al.

AIP Conference Proceedings 1390, p.536 - 544, 2011/09

 Times Cited Count:7 Percentile:84.66(Physics, Atomic, Molecular & Chemical)

no abstracts in English

Journal Articles

Achievement of 500 keV negative ion beam acceleration on JT-60U negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Nuclear Fusion, 51(8), p.083049_1 - 083049_8, 2011/08

 Times Cited Count:51 Percentile:88.4(Physics, Fluids & Plasmas)

Hydrogen negative ion beams of 490 keV, 3 A and 510 keV, 1 A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60SA and ITER.

Journal Articles

Demonstration of 500 keV beam acceleration on JT-60 negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Hydrogen negative ion beams of 490keV, 3A and 510 keV, 1A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of $$sim$$ 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60 SA and ITER.

Journal Articles

Development and design of the negative-ion-based NBI for JT-60 Super Advanced

Hanada, Masaya; Akino, Noboru; Endo, Yasuei; Inoue, Takashi; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; Komata, Masao; Kojima, Atsushi; Mogaki, Kazuhiko; et al.

Journal of Plasma and Fusion Research SERIES, Vol.9, p.208 - 213, 2010/08

A large negative ion source with an ion extraction area of 110 cm $$times$$ 45 cm has been developed to produce 500 keV, 22 A D$$^{-}$$ ion beams required for JT-60 Super Advanced. To realize the JT-60SA negative ion source, the JT-60 negative ion source has been modified and tested on the negative-ion-based neutral beam injector on JT-60U. A 500 keV H$$^{-}$$ ion beam has been produced at 3 A without a significant degradation of beam optics. This is the first demonstration of a high energy negative ion acceleration of more than one-ampere to 500 keV in the world. The beam current density of 90 A/m$$^{2}$$ is being increased to meet 130 A/m$$^{2}$$ of the design value for JT-60SA by tuning the operation parameters. A long pulse injection of 30 s has been achieved at a injection D$$^{0}$$ power of 3 MW. The injection energy, defined as the product of the injection time and power, reaches 80 MJ by neutralizing a 340 keV, 27 A D$$^{-}$$ ion beam produced with two negative ion sources.

Journal Articles

Recent R&D activities of negative-ion-based ion source for JT-60SA

Ikeda, Yoshitaka; Hanada, Masaya; Kamada, Masaki; Kobayashi, Kaoru; Umeda, Naotaka; Akino, Noboru; Ebisawa, Noboru; Inoue, Takashi; Honda, Atsushi; Kawai, Mikito; et al.

IEEE Transactions on Plasma Science, 36(4), p.1519 - 1529, 2008/08

 Times Cited Count:12 Percentile:41.25(Physics, Fluids & Plasmas)

The JT-60SA N-NBI system is required to inject 10 MW for 100 s at 500 keV. Three key issues should be solved for the JT-60SA N-NBI ion source. One is to improve the voltage holding capability. Recent R&D tests suggested that the accelerator with a large area of grids may need a high margin in the design of electric field and a long time for conditioning. The second issue is to reduce the grid power loading. It was found that some beamlets were strongly deflected due to beamlet-beamlet interaction and strike on the grounded grid. The grids are to be designed by taking account of beamlet-beamlet interaction in three-dimensional simulation. Third is to maintain the D- production for 100 s. A simple cooling structure is proposed for the active cooled plasma grid, where a key is the temperature gradient on the plasma grid for uniform D- production. The modified N-NBI ion source will start on JT-60SA in 2015.

Journal Articles

Technical design of NBI system for JT-60SA

Ikeda, Yoshitaka; Akino, Noboru; Ebisawa, Noboru; Hanada, Masaya; Inoue, Takashi; Honda, Atsushi; Kamada, Masaki; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; et al.

Fusion Engineering and Design, 82(5-14), p.791 - 797, 2007/10

 Times Cited Count:22 Percentile:80.64(Nuclear Science & Technology)

Modification of JT-60U to a superconducting device (so called JT-60SA) has been planned to contribute to ITER and DEMO. The NBI system is required to inject 34 MW for 100 s. The upgraded NBI system consists of twelve positive ion based NBI (P-NBI) units and one negative ion based NBI (N-NBI) unit. The injection power of the P-NBI units are 2 MW each at 85 keV, and the N-NBI unit will be 10 MW at 500 keV, respectively. On JT-60U, the long pulse operation of 30 s at 2 MW (85 keV) and 20 s at 3.2 MW (320 keV) have been achieved on P-NBI and N-NBI units, respectively. Since the temperature increase of the cooling water in both ion sources is saturated within 20 s, further pulse extension up to 100 s is expected to mainly modify the power supply systems in addition to modification of the N-NBI ion source for high acceleration voltage. The detailed technical design of the NBI system for JT-60SA is presented.

Journal Articles

Construction of the J-PARC L3BT control system

Shen, G.; Watanabe, Kazuhiko*; Kato, Yuko; Sakaki, Hironao; Sako, Hiroyuki; Ito, Yuichi; Yoshikawa, Hiroshi; Hanawa, Katsushi*; Mizuno, Seiji*

Proceedings of 3rd Annual Meeting of Particle Accelerator Society of Japan and 31st Linear Accelerator Meeting in Japan (CD-ROM), p.364 - 366, 2006/00

The control system of J-PARC project is under construction. After almost finishing the hardware installation of the L3BT section, an online device commissioning was performed for magnet power supply, stepping motor and vacuum system. Many components for device control have already been developed separately, but not integrated together yet. It is the first experience to combine all the components, including core software for a front-end IO controller, an EPICS run-time database, and a remote graphic user interface. This paper describes the detail of the recent construction status of the L3BT control system, including component development, system integration, and device commissioning.

Journal Articles

RDB system in J-PARC LINAC and its application to commissioning, 2

Sako, Hiroyuki; Sakaki, Hironao; Takahashi, Hiroki; Yoshikawa, Hiroshi; Ito, Yuichi; Kato, Yuko; Kawase, Masato; Shen, G.; Kiyomichi, Akio; Kamikubota, Norihiko*; et al.

Proceedings of 3rd Annual Meeting of Particle Accelerator Society of Japan and 31st Linear Accelerator Meeting in Japan (CD-ROM), p.373 - 375, 2006/00

A Relational database (RDB) system, which is the core of the J-PARC Linac control system, has been developed. The beam commissioning of Linac is planned to start in December 2006. The RDB sytem consists of the following databases; "DB1", which records basic device parameters, "DB2", which acquires online EPICS data, "Operation Log DB", which records a history of operating parameters, and "Commissioning DB", which holds information on geometry of devices and commissioning. We report on the development status of each DB as well as status of the unified commissioning environment software which utilizes these databases.

Journal Articles

Recent progress of negative ion based neutral beam injector for JT-60U

Umeda, Naotaka; Yamamoto, Takumi; Hanada, Masaya; Grisham, L. R.*; Kawai, Mikito; Oga, Tokumichi; Akino, Noboru; Inoue, Takashi; Kazawa, Minoru; Kikuchi, Katsumi*; et al.

Fusion Engineering and Design, 74(1-4), p.385 - 390, 2005/11

 Times Cited Count:9 Percentile:53.19(Nuclear Science & Technology)

In negative ion based neutral beam injector (N-NBI) for JT-60U, some modifications for extent pulse duration from 10 second, which is design value, to 30 second was conducted. Main limit to prevent pulse extension was heat loads onto grounded grid in an ion source and onto beam limiter placed at 22 m from the ion source. To reduce these heat loads, beam extraction area was optimized and the limiter was changed to one which had about twice thermal capacity. As a result of these modifications, the temperature rise of the water which was cooling grounded grid could be suppressed under 40 degree, which can operate in steady state condition. The temperature rise of the limiter could be restricted to 60%. Untill now the beam pulse extended to 17 second of 1.6MW power at 366keV energy, and injection of 30 seconds will be achieved in next experiment.

Journal Articles

RDB system in J-PARC LINAC and its application to commissioning

Sako, Hiroyuki; Sakaki, Hironao; Takahashi, Hiroki; Yoshikawa, Hiroshi; Ito, Yuichi*; Kato, Yuko*; Kamikubota, Norihiko*; Sugimoto, Makoto*; Watanabe, Kazuhiko*; Ikeda, Hiroshi*; et al.

Proceedings of 2nd Annual Meeting of Particle Accelerator Society of Japan and 30th Linear Accelerator Meeting in Japan, p.462 - 464, 2005/07

Current status of the RDB system in J-PARC LINAC is presented. The machine database records static data of devices and the control system, whereas the operation log database records a history of operation parameters. The overall design of control flow among high-level applications, simulators, and database is described. Then results of a control test of the power supply for DTQ, and a prototype test of the operation log database in MEBT1 test bench at KEK are reported. In the end, a scheme to generate simulation configuration files from RDB is shown.

Journal Articles

Development of user interface for accelerator components database

Watanabe, Kazuhiko*; Yoshikawa, Hiroshi; Sakaki, Hironao; Takahashi, Hiroki; Kawase, Masato*; Sugimoto, Makoto*

Proceedings of 2nd Annual Meeting of Particle Accelerator Society of Japan and 30th Linear Accelerator Meeting in Japan, p.451 - 453, 2005/07

In J-PARC, we manage the accelerator devices data using the relational database. It is used for managing physical value of all devices. We request the database to generate EPICS records, and the managed data must always the latest. Some data is treated by operator who doesn't have enough experience of database input. If they feel the input is difficult, the input of the database stagnates. In the worst case, the database might not be used. This paper reports the database GUI for operator who doesn't have enough experience of database.

Journal Articles

Development of remote control JAVA tool for PLC

Kawase, Masato*; Takahashi, Hiroki; Sakaki, Hironao; Ito, Yuichi*; Sugimoto, Makoto*; Watanabe, Kazuhiko*

Proceedings of 2nd Annual Meeting of Particle Accelerator Society of Japan and 30th Linear Accelerator Meeting in Japan, p.633 - 635, 2005/07

In J-PARC control System, machinery having a network controller(NTC) is operated with EPICS. A NTC can also connect with an upper level computer directly, while in EPICS, an IOC is used for communication between an upper level computer and a NTC. In case of a communication error, one must investigate the source of the error, whether it is due to the NTC. It becomes very effective if one can switch the connection method between EPICS and direct connection on an operation screen. We report on a development of a tool realizing such functionalities.

Journal Articles

Summary of 3GeVRCS control system, 2

Takahashi, Hiroki; Sakaki, Hironao; Sako, Hiroyuki; Yoshikawa, Hiroshi; Ito, Yuichi*; Kato, Yuko*; Kawase, Masato*; Sugimoto, Makoto*; Watanabe, Kazuhiko*

Proceedings of 2nd Annual Meeting of Particle Accelerator Society of Japan and 30th Linear Accelerator Meeting in Japan, p.531 - 533, 2005/07

J-PARC 3GeV RCS send the beam of a different parameter to both the institutions of MLF and MR. Therefore, 3GeV RCS Control System is required unprecedented capability to supervise correctly by distinguishing the beam for MLF and MR. Following the status report last year, this report shows the status of 3GeV RCS Control System focusing on Data Acquisition system which is able to collect the synchronized data and Based Data Management system which become the basis for 3GeV RCS Control System.

Journal Articles

Progress of negative ion source improvement in N-NBI for JT-60U

Kawai, Mikito; Akino, Noboru; Ebisawa, Noboru; Grisham, L. R.*; Hanada, Masaya; Honda, Atsushi; Inoue, Takashi; Kazawa, Minoru; Kikuchi, Katsumi*; Kuriyama, Masaaki; et al.

Fusion Science and Technology, 44(2), p.508 - 512, 2003/09

 Times Cited Count:5 Percentile:36.81(Nuclear Science & Technology)

The negative ion source for negative ion based neutral beam injector(N-NBI) of JT-60U aims at generating a negative ion beam with 500 keV and 22A for 10s. The N-NBI system was completed in 1996, followed by starting the efforts to increase beam power and energy. (1)Spatial non-uniformity of the source plasma causes position-dependent divergence of a beamlet due to mis-matching of local beam perveance. A part of the divergent energetic beams is intercepted by the grids and resultantly produce the excessive heat load of the grids and/or induce the high voltage breakdown. So several techniques to take measures against and to correct the non-uniformity in these sources were implemented. (2)Correction of beamlet deflection by adjusting the electric field at the extraction grids. It improved the beam divergence and then decreased an excessive heat load of a beam limiter by more than 50 %. As a result, the maximum injection power 6.2MW and beam pulse duration 10 seconds were obtaind.

Journal Articles

Improvement of beam performance in the negative-ion based NBI system for JT-60U

Umeda, Naotaka; Grisham, L. R.*; Yamamoto, Takumi; Kuriyama, Masaaki; Kawai, Mikito; Oga, Tokumichi; Mogaki, Kazuhiko; Akino, Noboru; Yamazaki, Haruyuki*; Usui, Katsutomi; et al.

Nuclear Fusion, 43(7), p.522 - 526, 2003/07

 Times Cited Count:39 Percentile:74.23(Physics, Fluids & Plasmas)

The Negative-ion based Neutral Beam Injection System (N-NBI) for JT-60U has been operating for plasma heating and non-inductive current drive since 1996. The target is inject of neutral beam into plasma with beam energy 500 keV, injection power 10 MW, for 10 seconds. Until now pulse duration time was restricted up to 5.3 seconds because of larger heat load of port limiter. Recently from the measurement of beam profile at 3.5m downstream from the ion source, it was found that the outermost beamlets in each segment were deflected outward. It was caused by non-uniform electric field by grooves. By improving this, outermost beamlet deflection angle was decreased from 14 mrad to 4 mrad. In this result, 10 seconds injection, which is target parameter, has achieved at 355 keV, 2.6MW, while pulse length was restricted up to 5.3 seconds by larger heat load of port limiter.

Journal Articles

Operation and development on the 500-keV negative-ion-based neutral beam injection system for JT-60U

Kuriyama, Masaaki; Akino, Noboru; Ebisawa, Noboru; Grisham, L. R.*; Honda, Atsushi; Ito, Takao; Kawai, Mikito; Kazawa, Minoru; Mogaki, Kazuhiko; Ohara, Yoshihiro; et al.

Fusion Science and Technology (JT-60 Special Issue), 42(2-3), p.410 - 423, 2002/09

 Times Cited Count:49 Percentile:93.12(Nuclear Science & Technology)

no abstracts in English

37 (Records 1-20 displayed on this page)