Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Negative and positive muon-induced single event upsets in 65-nm UTBB SOI SRAMs

Manabe, Seiya*; Watanabe, Yukinobu*; Liao, W.*; Hashimoto, Masanori*; Nakano, Keita*; Sato, Hikaru*; Kin, Tadahiro*; Abe, Shinichiro; Hamada, Koji*; Tampo, Motonobu*; et al.

IEEE Transactions on Nuclear Science, 65(8), p.1742 - 1749, 2018/08

 Times Cited Count:8 Percentile:62.99(Engineering, Electrical & Electronic)

Recently, the malfunction of microelectronics caused by secondary cosmic-ray muon is concerned as semiconductor devices become sensitive to radiation. In this study, we have performed muon irradiation testing for 65-nm ultra-thin body and thin buried oxide (UTBB-SOI) SRAMs in the Japan Proton Accelerator Research Complex (J-PARC), in order to investigate dependencies of single event upset (SEU) cross section on incident muon momentum and supply voltage. It was found that the SEU cross section by negative muon are approximately two to four times larger than those by positive muon in the momentum range from 35 MeV/c to 39 MeV/c. The supply voltage dependence of muon-induced SEU cross section was measured with the momentum of 38 MeV/c. SEU cross sections decrease with increasing supply voltage, but the decreasing of SEU cross section by negative muon is gentler than that by positive muon. Experimental data of positive and negative muon irradiation with the momentum of 38 MeV/c were analyzed by PHITS. It was clarified that the negative muon capture causes the difference between the SEU cross section by negative muon and that by positive muon.

Journal Articles

Measurement and mechanism investigation of negative and positive muon-induced upsets in 65-nm Bulk SRAMs

Liao, W.*; Hashimoto, Masanori*; Manabe, Seiya*; Watanabe, Yukinobu*; Abe, Shinichiro; Nakano, Keita*; Sato, Hikaru*; Kin, Tadahiro*; Hamada, Koji*; Tampo, Motonobu*; et al.

IEEE Transactions on Nuclear Science, 65(8), p.1734 - 1741, 2018/08

 Times Cited Count:14 Percentile:81.7(Engineering, Electrical & Electronic)

Soft error induced by secondary cosmic-ray muon is concerned since susceptibility of semiconductor device to soft error increases with the scaling of technology. In this study, we have performed irradiation tests of muons on 65-nm bulk CMOS SRAM in the Japan Proton Accelerator Research Complex (J-PARC) and measured soft error rate (SER) to investigate mechanism of muon-induced soft errors. It was found that SER by negative muon increases above 0.5 V supply voltage, although SER by positive muon increases monotonically as the supply voltage lowers. SER by negative muon also increases with forward body bias. In addition, negative muon causes large multiple cell upset (MCU) of more than 20 bits and the ratio of MCU events to all the events is 66% at 1.2V supply voltage. These tendencies indicate that parasitic bipolar action (PBA) is highly possible to contribute to SER by negative muon. Experimental data are analyzed by PHITS. It was found that negative muon can deposit larger charge than positive muon, and such events that can deposit large charge may trigger PBA.

Journal Articles

Nuclear magnetic field in solids detected with negative-muon spin rotation and relaxation

Sugiyama, Jun*; Umegaki, Izumi*; Nozaki, Hiroshi*; Higemoto, Wataru; Hamada, Koji*; Takeshita, Soshi*; Koda, Akihiro*; Shimomura, Koichiro*; Ninomiya, Kazuhiko*; Kubo, Kenya*

Physical Review Letters, 121(8), p.087202_1 - 087202_5, 2018/08

 Times Cited Count:18 Percentile:74.47(Physics, Multidisciplinary)

Journal Articles

The Development of a non-destructive analysis system with negative muon beam for industrial devices at J-PARC MUSE

Tampo, Motonobu*; Hamada, Koji*; Kawamura, Naritoshi*; Inagaki, Makoto*; Ito, Takashi; Kojima, Kenji*; Kubo, Kenya*; Ninomiya, Kazuhiko*; Strasser, P.*; Yoshida, Go*; et al.

JPS Conference Proceedings (Internet), 8, p.036016_1 - 036016_6, 2015/09

4 (Records 1-4 displayed on this page)
  • 1