Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 50

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Changes in sulfur metabolism in mouse brains following radon inhalation

Kanzaki, Norie; Sakoda, Akihiro; Kataoka, Takahiro*; Sun, L.*; Tanaka, Hiroshi; Otsu, Iwao*; Yamaoka, Kiyonori*

International Journal of Environmental Research and Public Health, 19(17), p.10750_1 - 10750_14, 2022/09

 Times Cited Count:0 Percentile:0(Environmental Sciences)

Reactive sulfur species (RSS) involve oxidative stress deeply and contribute anti-inflammatory effect, but no studied have focused on RSS changes after irradiation. In this study, we comprehensively analyzed the metabolites, focusing on RSS in mouse brain following radon inhalation. The ratio of oxidized glutathione to reduced glutathione and proportion of RSS in GSH or cysteine increased by radon inhalation. The sulfur ion might bind to GSH or cysteine chemically under conditions of oxidative stress, even at very low-dose exposure. We performed the overall assessment of high-dimensional data by applying machine learning and showed the specific characteristics of the effects by the exposure conditions. Our results suggested that RSS could produce a biological defense against oxidative stress following radon inhalation.

Journal Articles

Potential inhibitory effects of low-dose thoron inhalation and ascorbic acid administration on alcohol-induced hepatopathy in mice

Kataoka, Takahiro*; Ishida, Tsuyoshi*; Naoe, Shota*; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

Journal of Radiation Research (Internet), 63(5), p.719 - 729, 2022/09

 Times Cited Count:2 Percentile:47.19(Biology)

Journal Articles

Radon solubility and diffusion in the skin surface layer

Sakoda, Akihiro; Ishida, Tsuyoshi*; Kanzaki, Norie; Tanaka, Hiroshi; Kataoka, Takahiro*; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

International Journal of Environmental Research and Public Health, 19(13), p.7761_1 - 7761_12, 2022/07

 Times Cited Count:0 Percentile:0(Environmental Sciences)

In specific situations such as bathing in a radon spa, where the radon activity concentration in thermal water is far higher than that in air, it has been revealed that radon uptake via skin can occur and should be considered for more precise dose evaluation. The primary aim of the present study was to numerically demonstrate the distribution as well as the degree of diffusion of radon in the skin, with a focus on its surface layers (i.e., stratum corneum). We made a biokinetic model that included diffusion theory at the stratum corneum, and measured radon solubility in the stratum corneum to get a crucial parameter. The implementation of the model suggested that the diffusion coefficient in the stratum corneum was as low as general radon-proof sheets. The depth profile of radon in the skin was found to be that after a 20-minute immersion in water, the radon activity concentration at the top surface skin layer was approximately 1000 times higher than that at the viable skin layer. The information on the position of radon as a radiation source would contribute to special dose evaluation where specific target cell layers are assumed for the skin.

Journal Articles

Radon inhalation decreases DNA damage induced by oxidative stress in mouse organs via the activation of antioxidative functions

Kataoka, Takahiro*; Shuto, Hina*; Naoe, Shota*; Yano, Junki*; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Hanamoto, Katsumi*; Mitsunobu, Fumihiro*; Terato, Hiroaki*; et al.

Journal of Radiation Research (Internet), 62(5), p.861 - 867, 2021/09

 Times Cited Count:5 Percentile:55.27(Biology)

Journal Articles

Dosimetry of radon progeny deposited on skin in air and thermal water

Sakoda, Akihiro; Ishimori, Yuu; Kanzaki, Norie; Tanaka, Hiroshi; Kataoka, Takahiro*; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

Journal of Radiation Research (Internet), 62(4), p.634 - 644, 2021/07

 Times Cited Count:3 Percentile:38.06(Biology)

It is held that the skin dose from radon progeny is not negligibly small and that introducing cancer is a possible consequence under normal circumstances, while there are a number of uncertainties in terms of related parameters such as activity concentrations in air, target cells in skin, skin covering materials, and deposition velocities. Meanwhile, an interesting proposal emerged in that skin exposure to natural radon-rich thermal water as part of balneotherapy can produce an immune response to induce beneficial health effects. The goal of the present study was to obtain generic dose coefficients with a focus on the radon progeny deposited on the skin in air or water in relation to risk or therapeutic assessments. We thus first estimated the skin deposition velocities of radon progeny in the two media based on data from the latest human studies. Using the optimized velocities, skin dosimetry was then performed under different assumptions regarding alpha-emitting source position and target cell (i.e., basal cells or Langerhans cells). Furthermore, the impact of the radon progeny deposition on effective doses from all exposure pathways relating to "radon exposure" was assessed using various possible scenarios. It was found that in both exposure media, effective doses from radon progeny inhalation are one to four orders of magnitude higher than those from the other pathways. In addition, absorbed doses on the skin can be the highest among all pathways when the radon activity concentrations in water are two or more orders of magnitude higher than those in air.

Journal Articles

Evaluation of the redox state in mouse organs following radon inhalation

Kataoka, Takahiro*; Kanzaki, Norie; Sakoda, Akihiro; Shuto, Hina*; Yano, Junki*; Naoe, Shota*; Tanaka, Hiroshi; Hanamoto, Katsumi*; Terato, Hiroaki*; Mitsunobu, Fumihiro*; et al.

Journal of Radiation Research (Internet), 62(2), p.206 - 216, 2021/03

AA2020-0273.pdf:1.2MB

 Times Cited Count:6 Percentile:61.83(Biology)

Radon inhalation activates antioxidative functions in mouse organs, thereby contributing to inhibition of oxidative stress-induced damage. Therefore, in this study, we evaluated the redox state of various organs in mice following radon inhalation. Mice inhaled radon at concentrations of 2 or 20 kBq/m$$^{3}$$ for 1, 3, or 10 days. The relationship between antioxidative function and oxidative stress was evaluated by principal component analysis (PCA) and correlation coefficient compared with control mice subjected to sham inhalation. These findings suggested that radon inhalation altered the redox state in organs, but that the characteristics varied depending on the redox state in organs.

Journal Articles

Methodology for simple spot measurement of equilibrium equivalent radon concentration

Sakoda, Akihiro; Ishimori, Yuu; Kanzaki, Norie; Tanaka, Hiroshi

Radiation Protection Dosimetry, 191(4), p.383 - 390, 2020/10

 Times Cited Count:1 Percentile:12.16(Environmental Sciences)

Estimation of the effective inhalation dose of short half-life radon progeny requires the quantification of radon equilibrium equivalent activity concentrations (EEC). The aim of the present study is to develop new methodology that focuses on spot measurements to determine EEC from single gross alpha counts and determine an optimized protocol. The core of the approach is to measure alpha particles over time when the radon progeny attached to the sampling filter are significantly disintegrated. The calibration curve of single counts to EEC is theoretically deduced and validated by a comparison test. The advantage of the present method is its minimal requirements, including the use of common instruments and simple sampling, alpha counting, and analysis procedures. This approach offers an option for radon practitioners working in a variety of fields, as well as the possibility for non-experts to easily measure EEC.

Journal Articles

Comparison of antioxidative effects between radon and thoron inhalation in mouse organs

Kobashi, Yusuke*; Kataoka, Takahiro*; Kanzaki, Norie; Ishida, Tsuyoshi*; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

Radiation and Environmental Biophysics, 59(3), p.473 - 482, 2020/08

 Times Cited Count:5 Percentile:40.94(Biology)

Radon therapy has been traditionally performed globally for oxidative stress-related diseases. Many researchers have studied the beneficial effects of radon exposure in living organisms. However, the effects of thoron, a radioisotope of radon, have not been fully examined. In this study, we aimed to compare the biological effects of radon and thoron inhalation on mouse organs with a focus on oxidative stress. Male BALB/c mice were randomly divided into 15 groups: sham inhalation, radon inhalation at a dose of 500 Bq/m$$^{3}$$ or 2000 Bq/m$$^{3}$$, and thoron inhalation at a dose of 500 Bq/m$$^{3}$$ or 2000 Bq/m$$^{3}$$ were carried out. Immediately after inhalation, mouse tissues were excised for biochemical assays. The results showed a significant increase in superoxide dismutase and total glutathione, and a significant decrease in lipid peroxide following thoron inhalation under several conditions. Additionally, similar effects were observed for different doses and inhalation times between radon and thoron. Our results suggest that thoron inhalation also exerts antioxidative effects against oxidative stress in organs. However, the inhalation conditions should be carefully analyzed because of the differences in physical characteristics between radon and thoron.

Journal Articles

Study of biokinetics of radon progeny with thoron progeny as the isotope tracer

Sakoda, Akihiro; Kanzaki, Norie; Tanaka, Hiroshi; Kataoka, Takahiro*; Yamaoka, Kiyonori*

Nihon Kenko Kaihatsu Zasshi, (40), p.90 - 94, 2019/06

no abstracts in English

Journal Articles

Protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice

Etani, Reo*; Kataoka, Takahiro*; Kanzaki, Norie*; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro*; Taguchi, Takehito*; Yamaoka, Kiyonori*

Journal of Radiation Research, 58(5), p.614 - 625, 2017/05

 Times Cited Count:13 Percentile:53.9(Biology)

Radon therapy using radon ($$^{222}$$Rn) gas is classified into two types of treatment: inhalation of radon gas and drinking water containing radon. Although short- or long-term intake of spa water is effective in increasing gastric mucosal blood flow, and spa water therapy is useful for treating chronic gastritis and gastric ulcer, the underlying mechanisms for and precise effects of radon protection against mucosal injury are unclear. In the present study, we examined the protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. Mice inhaled radon at a concentration of 2000 Be/m$$^{3}$$ for 24 h or were provided with hot spring water for 2 weeks. The activity density of $$^{222}$$Rn ranged from 663 Bq/l (start point of supplying) to 100 Bq/l (end point of supplying).Mice were then orally administered ethanol at three concentrations. The ulcer index (UI), an indicator of mucosal injury, increased in response to the administration of ethanol; however, treatment with either radon inhalation or hot spring water inhibited the elevation in the UI due to ethanol. Although no significant differences in antioxidative enzymes were observed between the radon-treated groups and the non-treated control groups, lipid peroxide levels were significantly lower in the stomachs of mice pre-treated with radon or hot spring water. These results suggest that hot spring water drinking and radon inhalation inhibit ethanol-induced gastric mucosal injury.

Journal Articles

Measurements of radon activity concentration in mouse tissues and organs

Ishimori, Yuu; Tanaka, Hiroshi; Sakoda, Akihiro; Kataoka, Takahiro*; Yamaoka, Kiyonori*; Mitsunobu, Fumihiro*

Radiation and Environmental Biophysics, 56(2), p.161 - 165, 2017/05

 Times Cited Count:7 Percentile:38.06(Biology)

In order to investigate the biokinetics of inhaled radon, radon concentrations in mouse tissues and organs were determined after mice had been exposed to about 1 MBq/m$$^{3}$$ of radon in air. Radon concentrations in mouse blood and in other tissues and organs were measured with a liquid scintillation counter and with a well-type HP Ge detector, respectively. Radon concentration in mouse blood was 0.410$$pm$$0.016 Bq/g when saturated with 1 MBq/m$$^{3}$$ of radon concentration in air. In addition, average partition coefficients obtained were 0.74$$pm$$0.19 for liver, 0.46$$pm$$0.13 for muscle, 9.09$$pm$$0.49 for adipose tissue, and 0.22$$pm$$0.04 for other organs. With these results, a value of 0.414 for the blood-to-air partition coefficient was calculated by means of our physiologically based pharmacokinetic model. The time variation of radon concentration in mouse blood during exposure to radon was also calculated. All results are compared in detail with those found in the literature.

Journal Articles

One-year measurements of $$gamma$$-ray background using a high-purity germanium detector

Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu

Hoken Butsuri, 51(4), p.245 - 250, 2016/12

In the present work, the natural $$gamma$$-ray background was thoroughly measured using a high-purity germanium detector in a year (283.5 days in total, $$n$$ = 271). The data was first discussed in relation to radon concentrations in the laboratory. No correlations were found between the $$gamma$$-ray count rates from $$^{214}$$Pb and $$^{214}$$Bi and radon concentrations, meaning that radon just around the germanium detector was reduced to the negligible level by the introduction of nitrogen gas. Also, the count rates of major nuclides appeared to fluctuate with the coefficient of variance of a few up to several tens of percent, without seasonal variations. Furthermore, summing of all $$gamma$$-ray spectra allowed us to see neutron-induced peaks that cannot be detected in usual short-term measurements. All data obtained here would be the knowledge useful for the practice of $$gamma$$-ray measurements.

Journal Articles

Analysis of variations in observed ambient dose rates due to rainfall or snowfall at JAEA Ningyo-toge

Tanaka, Hiroshi; Sakoda, Akihiro; Ando, Masaki; Ishimori, Yuu

Hoken Butsuri, 51(2), p.107 - 114, 2016/06

Ambient dose rates are continuously monitored in Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency. The present study discussed the variations in ambient dose rates, observed from April 2014 to March 2015, due to snowfall as well as rainfall. It is much snowy as one of climatic features in this area. Rain or snow was sampled for a certain period in the day of interest (17 cases in total), and then the concentration of radon progeny was measured. With the measured data, the variation in ambient dose rate was calculated considering the accumulation of the radon progeny on the ground. As a whole, this calculation was found to reasonably reproduce the time trends of observed dose rates, except for four cases. Based on the backward trajectory analysis, it was explained that the discrepancy in two cases out of the four was induced by changes of radon progeny concentration in precipitation around sampling period. It was suggested that the other two cases were caused by the run-off of rain from the ground surface.

Journal Articles

Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice

Etani, Reo*; Kataoka, Takahiro*; Kanzaki, Norie*; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

Journal of Radiation Research, 57(3), p.250 - 257, 2016/06

 Times Cited Count:10 Percentile:46.3(Biology)

Although radon therapy is indicated for hyperuricemia, the underlying mechanisms of action have not yet been elucidated in detail. Therefore, we herein examined the inhibitory effects of radon inhalation and hot spring water drinking on potassium oxonate (PO)-induced hyperuricemia in mice. After mice inhaled radon at a concentration of 2000 Bq/m$$^{3}$$ for 24 h or were given hot spring water for 2 weeks, they were administrated PO. Radon inhalation or hot spring water drinking significantly inhibited elevations in serum uric acid levels through the suppression of xanthine oxidase activity in the liver. Radon inhalation activated anti-oxidative functions in the liver and kidney. These results suggest that radon inhalation inhibits PO-induced hyperuricemia by activating anti-oxidative functions, while hot spring water drinking may suppress PO-induced elevations in serum uric acid levels through the pharmacological effects of the chemical compositions dissolved in it.

JAEA Reports

Animal study on biological responses by radon inhalation making use of waste rock which contains feeble activity of uranium, 2; (Joint research)

Ishimori, Yuu; Sakoda, Akihiro; Tanaka, Hiroshi; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*; Kataoka, Takahiro*; Etani, Reo*

JAEA-Research 2015-024, 41 Pages, 2016/03

JAEA-Research-2015-024.pdf:3.11MB

Okayama University and the Japan Atomic Energy Agency (JAEA) have carried out the collaborative study of physiological effects of inhaled radon for the low-dose range. Main assignments were as follows. Based on the clinical knowledge, Misasa Medical Center (Okayama University Hospital) clarified the issues that should be addressed. Graduate School of Health Sciences (Okayama University) supervised the research and studied the biological responses. The JAEA made the development and control of a facility for radon inhalation experiments and the investigation of biokinetics and exposure doses of radon. From 2009 to 2013, the following results were obtained. (1) Literature on drinking effects of radon hot spring water was surveyed to determine the present tasks. (2) Under the present experimental conditions, drinking of hot spring water into which radon was intentionally introduced using the equipment in the facility did not have significant effects on mice. (3) Inhibitory effects of antioxidant pre-supplements (Vitamins C and E) and radon pre-inhalation on hepatic or renal oxidative damage were examined to make the comparison. (4) In order to discuss biological responses quantitatively following radon inhalation, the biokinetics of inhaled radon were studied. (5) Some exposure routes due to inhalation of radon or its progeny were modeled to calculate organ doses in mice.

JAEA Reports

Animal study on biological responses by radon inhalation making use of waste rock which contains feeble activity of uranium (Joint research)

Ishimori, Yuu; Sakoda, Akihiro; Tanaka, Hiroshi; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*; Kataoka, Takahiro*; Yamato, Keiko*; Nishiyama, Yuichi*

JAEA-Research 2013-005, 60 Pages, 2013/06

JAEA-Research-2013-005.pdf:4.49MB

Okayama University and the Japan Atomic Energy Agency (JAEA) have carried out the collaborative study of physiological effects of inhaled radon for the low-dose range. From 2007 to 2011, the following results were obtained. (1) Literature on effects of radon for the low-dose range was surveyed to determine the present tasks. (2) The first Japanese large-scale facility was developed for radon inhalation experiments with small animals. (3) Relationships between radon concentration and inhalation time were widely examined to understand the change in antioxidative functions due to radon, which are the most basic parameters. (4) Inhibitory effects of radon on oxidative damages were observed using model mice with reactive oxygen- or free radical-related diseases like alcohol-induced oxidative damages and type I diabetes. (5) In order to discuss biological responses quantitatively following radon inhalation, the biokinetics of inhaled radon was examined and the model for calculation of absorbed doses for organs and tissues was obtained.

Journal Articles

New result in the production and decay of an isotope, $$^{278}$$113 of the 113th element

Morita, Kosuke*; Morimoto, Koji*; Kaji, Daiya*; Haba, Hiromitsu*; Ozeki, Kazutaka*; Kudo, Yuki*; Sumita, Takayuki*; Wakabayashi, Yasuo*; Yoneda, Akira*; Tanaka, Kengo*; et al.

Journal of the Physical Society of Japan, 81(10), p.103201_1 - 103201_4, 2012/10

 Times Cited Count:167 Percentile:97.27(Physics, Multidisciplinary)

An isotope of the 113th element, $$^{278}$$113, was produced in a nuclear reaction with a $$^{70}$$Zn beam on a $$^{209}$$Bi target. We observed six consecutive $$alpha$$ decays following the implantation of a heavy particle in nearly the same position in the semiconductor detector, in extremely low background condition. The fifth and sixth decays are fully consistent with the sequential decays of $$^{262}$$Db and $$^{258}$$Lr both in decay energies and decay times. This indicates that the present decay chain consisted of $$^{278}$$113, $$^{274}$$Rg (Z = 111), $$^{270}$$Mt (Z = 109), $$^{266}$$Bh (Z = 107), $$^{262}$$Db (Z = 105), and $$^{258}$$Lr (Z = 103) with firm connections. This result, together with previously reported results from 2004 and 2007, conclusively leads the unambiguous production and identification of the isotope $$^{278}$$113, of the 113th element.

Journal Articles

Study of the response of superoxide dismutase in mouse organs to radon using a new large-scale facility for exposing small animals to radon

Kataoka, Takahiro*; Sakoda, Akihiro; Ishimori, Yuu; Toyota, Teruaki*; Nishiyama, Yuichi*; Tanaka, Hiroshi; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

Journal of Radiation Research, 52(6), p.775 - 781, 2011/11

 Times Cited Count:26 Percentile:67.24(Biology)

We examined dose-dependent or dose rate-dependent changes of superoxide dismutase (SOD) activity using a new large-scale facility for exposing small animals to radon. Mice were exposed to radon at a concentration of 250, 500, 1000, 2000, or 4000 Bq/m$$^{3}$$ for 0.5, 1, 2, 4, or 8 days. When mice were exposed to radon at 2000 day Bq/m$$^{3}$$, activation of SOD activities in plasma, liver, pancreas, heart, thymus, and kidney showed dose-rate effects. Our results also suggested that continuous exposure to radon increased SOD activity, but SOD activity transiently returned to normal levels at around 2 days. Moreover, we classified the organs into four groups ((1) plasma, brain, lung (2) heart, liver, pancreas, small intestine (3) kidney, thymus (4) stomach) based on changes in SOD activity. Thymus had the highest responsiveness and stomach had lowest. These data provide useful baseline measurements for future studies on radon effects.

Journal Articles

Performance of the first Japanese large-scale facility for radon inhalation experiments with small animals

Ishimori, Yuu; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*; Tanaka, Hiroshi; Kataoka, Takahiro*; Sakoda, Akihiro*

Radiation Protection Dosimetry, 146(1-3), p.31 - 33, 2011/07

 Times Cited Count:12 Percentile:66.82(Environmental Sciences)

A radon test facility for small animals was developed in order to increase the statistical validity of differences of the biological response in various radon environments. This paper illustrates the performances of that facility, the first large-scale facility of its kind in Japan. The facility has a capability to conduct approximately 150 mouse-scale tests at the same time. The apparatus for exposing small animals to radon has six animal chamber groups with five independent cages each. Different radon concentrations in each animal chamber group are available. Because the first target of this study is to examine the in vivo behavior of radon and its effects, the major functions to control radon and to eliminate thoron were examined experimentally. Additionally, radon progeny concentrations and their particle size distributions in the cages were also examined experimentally to be considered in future projects.

Journal Articles

Primary functions of the first Japanese large-scale facility for exposing small animals to radon

Ishimori, Yuu; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*; Tanaka, Hiroshi; Kataoka, Takahiro*; Sakoda, Akihiro*

Hoken Butsuri, 45(1), p.65 - 71, 2010/03

Japan Atomic Energy Agency (JAEA) and Okayama University have carried out the experimental animal study and its related studies since 2007 in order to examine the physical effect of radon in detail. Thus, a radon test facility for small animals was developed in order to increase the statistical certainty of our animal tests. This paper illustrates the performance of the facility, the first large-scale facility in Japan. The facility has a potential of about 150 mouse-scale test at the same time. Different concentration at each animal chamber group is available. Controlling radon and avoiding thoron were theoretically and experimentally shown as the fundamental performance of the facility. The relative standard deviation of the radon concentration at the highest concentration group was about 5%, although the lower concentration groups seemed to be affected by variation of background.

50 (Records 1-20 displayed on this page)