Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 64

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of a design support system for geological disposal using a CIM concept

Sugita, Yutaka; Kawaguchi, Tatsuya; Hatanaka, Koichiro; Shimbo, Hiroshi*; Yamamura, Masato*; Kobayashi, Yuichi*; Fujisawa, Yasuo*; Kobayashi, Ichiro*; Yabuki, Nobuyoshi*

Proceedings of 16th International Conference on Computing in Civil and Building Engineering (ICCCBE 2016) (Internet), p.1173 - 1182, 2016/07

This paper presents status of development of the iSRE (integrated system for repository engineering) as a design supporting system that enables rational designing of a geological disposal repository. The complimentary technique of construction information modeling/management (CIM) has been employed for the development of iSRE. CIM uses a shared three dimensional (3D) model of associated data through common data models. The contents of this paper are the goal of the development, design requirements and required functions, the basic structure of iSRE. The main databases of the iSRE could then be designed with an interface to coordinate with external systems and other databases. Some of the databases and the interfaces were trialed and a data model was then built. A scenario of iSRE operation was also created and the applicability of iSRE using a data model was also examined. Thanks to the use of the existing software, the development process could be conducted while solving problems for realistic test cases. The prospect of the development of the iSRE for geological disposal projects was realized and the iSRE was confirmed as being a useful tool for designing a repository.

JAEA Reports

Enhancement of the methodology of repository design and post-closure performance assessment for preliminary investigation stage, 3; Progress report on NUMO-JAEA collaborative research in FY2013 (Joint research)

Shibata, Masahiro; Sawada, Atsushi; Tachi, Yukio; Makino, Hitoshi; Wakasugi, Keiichiro; Mitsui, Seiichiro; Kitamura, Akira; Yoshikawa, Hideki; Oda, Chie; Ishidera, Takamitsu; et al.

JAEA-Research 2014-030, 457 Pages, 2015/03

JAEA-Research-2014-030.pdf:199.23MB

JAEA and NUMO have conducted a collaborative research work which is designed to enhance the methodology of repository design and post-closure performance assessment in preliminary investigation stage. With regard to (1) study on rock suitability in terms of hydrology, based on some examples of developing method of hydro-geological structure model, acquired knowledge are arranged using the tree diagram, and model uncertainty and its influence on the evaluation items were discussed. With regard to (2) study on scenario development, the developed approach for "defining conditions" has been reevaluated and improved from practical viewpoints. In addition, the uncertainty evaluation for the effect of use of cementitious material, as well as glass dissolution model, was conducted with analytical evaluation. With regard to (3) study on setting radionuclide migration parameters, based on survey of precedent procedures, multiple-approach for distribution coefficient of rocks was established, and the adequacy of the approach was confirmed though its application to sedimentary rock and granitic rock. Besides, an approach for solubility setting was developed including the procedure of selection of solubility limiting solid phase. The adequacy of the approach was confirmed though its application to key radionuclides.

Journal Articles

Direct disposal

Hatanaka, Koichiro; Shibata, Masahiro

Tekisuto "Kakunenryo Saikuru" (Internet), 6 Pages, 2014/06

no abstracts in English

JAEA Reports

Research on engineering technology in the full-scale demonstration of EBS and operation technology for HLW disposal; Research report in 2010 (Joint research)

Nakatsuka, Noboru; Hatanaka, Koichiro; Sato, Haruo; Sugita, Yutaka; Nakayama, Masashi; Asano, Hidekazu*; Saito, Masahiko*; Suyama, Yasuhiro*; Hayashi, Hidero*; Honda, Yuko*; et al.

JAEA-Research 2013-026, 57 Pages, 2013/11

JAEA-Research-2013-026.pdf:7.48MB

JAEA and RWMC concluded the letter of cooperation agreement on the research and development of radioactive waste disposal in April, 2005, and have been carrying out the collaboration work described above based on the agreement. JAEA have been carrying out the Horonobe URL Project which is intended for a sedimentary rock in the Horonobe town, Hokkaido, since 2001. In the project, geoscientific research and research and development on geological disposal technology are being promoted. Meanwhile, the government (the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry) has been promoting construction of equipments for the full-scale demonstration of engineered barrier system and operation technology for high-level radioactive waste (HLW) disposal since 2008, to enhance public's understanding to the geological disposal of HLW, using underground facility, etc. RWMC received an order of the project in fiscal year 2010 continuing since fiscal year 2008. Since topics in this project are included in the Horonobe URL Project, JAEA carried out this project as collaboration work continuing in FY 2008. This report summarizes the results of engineering technology carried out in this collaboration work in fiscal year 2010. In fiscal year 2010, part of the equipments for emplacement of buffer material was produced and a house for the equipments and apparatus was opened in the adjoining land of Public Information House of JAEA Horonobe.

JAEA Reports

Development of grout materials for a geological disposal system for high-level radioactive waste, 2

Kawaguchi, Masanao; Nakanishi, Tatsuro; Kishi, Hirokazu; Nobuto, Jun*; Yamada, Tsutomu*; Fujita, Tomoo; Hatanaka, Koichiro

JAEA-Data/Code 2012-007, 250 Pages, 2012/11

JAEA-Data-Code-2012-007.pdf:20.55MB

Cementitious materials are commonly used for rock support, lining, and grouting, their pH plume are considered to have an adverse effect on long-term safety of a geological disposal system. In addition, during the emplacement of waste package with buffer material, it is required to limit amount of groundwater inflow to a certain level by grouting. Therefore, it is necessary to develop new grout materials with penetrability for smaller fractures. We have developed new grout materials, which have better penetrability and are environmentally more friendly than exinting cementitious grout materials since FY 2007. This sequel report shows the most appropriate composition and the penetration characteristic of new grout materials to be suitable for the ${it in-situ}$ experiment based on the result of indoor test carried out after FY 2008.

Journal Articles

Characteristic evaluation of colloidal silica grout material developed for a high level radioactive waste geological repository

Kishi, Hirokazu; Kawaguchi, Masanao; Naito, Morimasa; Hatanaka, Koichiro; Nobuto, Jun*; Sugiyama, Hirokazu*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 19(1), p.3 - 8, 2012/06

To reduce amount of groundwater inflow into a geological repository, the grouting is expected to play a very important role because the geological environment in Japan is often characterized by many fractures and abundant groundwater. Basically, cementitious materials are used for grouting, however the resulting highly alkaline plume released from the materials could influence the long-term performance of barrier system as a consequence of alteration of both the buffer material and the host rock. To minimize such effects, JAEA has carried out research and development on three types of grout material with low-pH performance that decreases influence in the alteration. This paper focuses on the Colloidal silica grout, and presents its unique characteristics obtained from laboratory tests on pH, viscosity, leaching and so on. The results indicate that the grout has good performances in pH and viscosity. It is concluded that the grout can be greatly used for the repository.

Journal Articles

Mix design of low pH cement shotcrete in high level radioactive waste repositories

Noguchi, Akira; Kishi, Hirokazu; Hatanaka, Koichiro; Naito, Morimasa

Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19) (CD-ROM), 6 Pages, 2011/10

A standardized method for choosing a mix design of low pH shotcrete is proposed for their intended use in the construction of a High Level Radioactive Waste (HLW) repository in order to be applied to the various geological environment of the location of the HLW repositories. There are two improvement in this method. One is estimating binder composition to satisfy low pH. The other is estimating water bender ratio to satisfy the strength of sprayed concrete. The method uses a sequential development process with consideration given to a number of physicochemical requirements, incorporates current shotcrete technology. The method is demonstrated in its entirety through a series of experiments and tests using a low pH cement binder comprised of a mixture of ordinary Portland cement, fly ash (FA) and silica fume (SF), referred to here as high-volume FA SF cement (HFSC). Moreover, the method is referred from the demonstration of HFSC shotcrete in Horonobe underground research laboratory.

JAEA Reports

Research on engineering technology in the full-scale demonstration of EBS and operation technology for HLW disposal; Research report in 2009 (Joint research)

Nakatsuka, Noboru; Hatanaka, Koichiro; Sato, Haruo; Sugita, Yutaka; Nakayama, Masashi; Miyahara, Shigenori; Asano, Hidekazu*; Saito, Masahiko*; Suyama, Yasuhiro*; Hayashi, Hidero*; et al.

JAEA-Research 2010-060, 50 Pages, 2011/02

JAEA-Research-2010-060.pdf:6.7MB

Japan Atomic Energy Agency (JAEA) and Radioactive Waste Management Funding and Research Center (RWMC) concluded the letter of cooperation agreement on the research and development of radioactive waste disposal in April, 2005, and have been carrying out the collaboration work described above based on the agreement. JAEA have been carrying out the Horonobe Underground Research Laboratory (URL) Project which is intended for sedimentary rock in the Horonobe town, Hokkaido, since 2001. In the project, geoscientific research and research and development on geological disposal technology are being promoted. Meanwhile, the government (the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry) has been promoting construction of equipments for the full-scale demonstration of engineered barrier system and operation technology for high-level radioactive waste (HLW) disposal since 2008, to enhance publics understanding to the geological disposal of HLW, using underground facility, etc. RWMC received an order of the project in fiscal year 2009 (2009/2010) continuing in fiscal year 2008 (2008/2009). Since topics in this project are included in the Horonobe URL Project, JAEA carried out this project as collaboration work continuing in fiscal year 2008. This report summarizes the results of engineering technology carried out in this collaboration work in fiscal year 2009. In fiscal year 2009, a part of the equipments for equipment of buffer material and visualization test apparatus for water penetration in buffer material were produced and house for the equipments and apparatus was constructed.

JAEA Reports

Research on engineering technology in the full-scale demonstration of EBS and operation technology for HLW disposal; Research report in 2008 (Joint research)

Nakatsuka, Noboru; Hatanaka, Koichiro; Sato, Haruo; Sugita, Yutaka; Nakayama, Masashi; Miyahara, Shigenori; Asano, Hidekazu*; Saito, Masahiko*; Suyama, Yasuhiro*; Hayashi, Hidero*; et al.

JAEA-Research 2009-044, 53 Pages, 2010/01

JAEA-Research-2009-044.pdf:9.03MB

Japan Atomic Energy Agency (JAEA) and Radioactive Waste Management Funding and Research Center (RWMC) effect an agreement about research and development of high level radioactive waste (HLW) disposal and carried out research and technological development about geological disposal technology. JAEA has been carried out the Horonobe Underground Research Laboratory (URL) Project which is intended for sedimentary rock and the Project includes geoscientific research and geological disposal technology. RWMC carried out an investigation about full-scale demonstration of engineered barrier system (EBS) and operation technology for HLW disposal, under the contract with the Natural Resources and Energy Agency, Ministry of Economy, the Trade and Industry. The investigation aims to obtain the citizens' understanding of the geological disposal. This work includes the full-scale demonstration of operation technology in the Horonobe URL. This joint research is about engineering technology concerned with the work. In 2008 fiscal year (2008/2009), the master plan of the work was made, and a part of the device for transportation of engineered barrier was made, and it has begun the exhibition of full-scale bentonite block and overpack.

Journal Articles

Geo-descriptive modeling of water conducting features characterized in sedimentary formations in Horonobe area of Japan

Hatanaka, Koichiro; Lim, D.-H.*; Ishii, Eiichi

Materials Research Society Symposium Proceedings, Vol.1265, 6 Pages, 2010/00

A three-dimensional DFN geo-descriptive model is developed for WCFs in the sedimentary formations of Horonobe URL in Japan. Fracturing and faulting system in/around the URL area, which is the main investigation area of the Horonobe URL project, is characterized by taking into account borehole geophysical logging data, regional geologic/structural data, and fracture/fault data (orientation, intensity, size) obtained from the surface-based investigations. Volumetric fracture intensity potential is estimated by the correlation and the multi-linear regression analysis of observed data, and is used as one of controls for 3-D DFN model. A regional scale 3-D geo-descriptive DFN model is constructed based on the analyzed fracturing system identified for the WCFs. The current 3-D geo-descriptive model could be utilized explicitly to derive PA parameters for the hypothetical repository of the high-level radioactive wastes in Japan, and to assist optimization of the safe repository design.

JAEA Reports

Proceedings of the International Information Exchange Meeting on Diffusion Phenomena in Bentonite and Rock; Aiming at the Safety Assessment of the Geological Disposal; July 18, 2006, Horonobe Underground Research Center, Horonobe-cho, Teshio-gun, Hokkaido, Japan

Sato, Haruo; Hatanaka, Koichiro

JAEA-Conf 2008-001, 58 Pages, 2009/12

JAEA-Conf-2008-001.pdf:6.09MB

The International Information Exchange Meeting on Diffusion Phenomena in Bentonite and Rock was held at Horonobe Underground Research Center on 18th July, 2006. This meeting was hosted by Japan Atomic Energy Agency (JAEA) and supported by Hokkaido University and Radioactive Waste Management Funding and Research Center (RWMC). Totally 18 scientists who are specialists of diffusion participated from Finland (VTT) and Japan (7 research organizations) in the meeting. Totally 6 presentations were made and discussed on recent research activities and outputs on diffusion phenomena in bentonite and rock. The presented papers and documents are compiled in the proceedings.

Journal Articles

Uncertainty reduction of hydrologic models using data from surface-based investigation

Karasaki, Kenji*; Ito, Kazumasa*; Wu, Y.*; Shimo, Michito*; Sawada, Atsushi; Maekawa, Keisuke; Hatanaka, Koichiro

Proceedings of TOUGH Symposium 2009 (Internet), 9 Pages, 2009/09

Journal Articles

Geosynthesis; Testing a safety case methodology at generic Japanese URLs

Hatanaka, Koichiro; Osawa, Hideaki; Umeki, Hiroyuki

Proceedings of 3rd Amigo Workshop on Approaches and Challenges for the Use of Geological Information in the Safety Case (CD-ROM), p.134 - 153, 2009/00

The paper describes the information flow methodology and its applicability to site selection in Japan, which involve provisional safety case development to support key decisions. Using the JAEA database for the two URLs at Mizunami and Horonobe, the maturity of the existing technology will be illustrated and key challenges for future development discussed.

Journal Articles

Applying systematic geosynthesis methodology to surface-based investigation in "Horonobe URL Project", Japan

Hatanaka, Koichiro; Shigeta, Naotaka; Fukushima, Tatsuo

Proceedings of 2008 International High-Level Radioactive Waste Management Conference (IHLRWM 2008) (CD-ROM), p.101 - 108, 2008/09

The surface-based investigation (Phase I) in the Horonobe URL project has been conducted from March, 2001 until the end of the year 2005 as shown in Figure 1. Throughout the Phase I investigation, the concepts of geosynthesis and iterative assessment of the stepwise investigations were introduced towards characterization of the geological environment in the area including Horonobe URL site and the applicability was confirmed. The achievement of the Phase I investigation was summarized in the year 2006 and the relevant progress reports were published in March, 2007. In this paper, the concepts based on the geosynthesis methodology and its iterative application throughout stepwise investigations applied in the Horonobe URL project are discussed and summarized.

Journal Articles

Development of engineering technology for sedimentary rock in "Horonobe URL Project", Japan

Hatanaka, Koichiro; Morioka, Hiroshi*; Fukushima, Tatsuo

Proceedings of 2008 International High-Level Radioactive Waste Management Conference (IHLRWM 2008) (CD-ROM), p.250 - 257, 2008/09

In this paper, the procedure for planning design/construction of the underground facilities developed in Phase I of Horonobe URL project, and current status of the actual construction in Phase II based on the design and relevant engineering technology developed in Phase I are briefly described.

Journal Articles

Application of direct-fitting, mass integral, and multirate methods to analysis of flowing fluid electric conductivity logs from Horonobe, Japan

Doughty, C.*; Tsang, C.-F.*; Hatanaka, Koichiro; Yabuuchi, Satoshi; Kurikami, Hiroshi

Water Resources Research, 44(8), p.W08403_1 - W08403_11, 2008/08

 Times Cited Count:17 Percentile:44.21(Environmental Sciences)

The flowing fluid electric conductivity (FFEC) logging method is an efficient way to provide information on the depths, salinities, and inflow strengths of individual conductive features intercepted by a borehole, without the use of specialized probes. The present paper presents the application of the method to two zones within a 1000-m borehole in sedimentary rock, which produced, for each zone, three sets of logs at different pumping rates, each set measured over a period of about one day.

Journal Articles

Kinetic behavior of water as migration media in compacted montmorillonite using H$$_{2}$$$$^{18}$$O and applying electric potential gradient

Tanaka, Shingo*; Noda, Natsuko*; Higashihara, Tomohiro*; Sato, Seichi*; Kozaki, Tamotsu*; Sato, Haruo; Hatanaka, Koichiro

Physics and Chemistry of the Earth, 33(Suppl.1), p.S163 - S168, 2008/00

In order to identify mass transport pathway in compacted bentonite, water transport behavior in compacted montmorillonite which is the major clay mineral constituent of the bentonite was studied. Back-to-back diffusion and electro-osmosis experiments for H$$_{2}$$O were carried out at montmorillonite densities of 1.0, 1.2 and 1.4 Mg/m$$^{3}$$ using H$$_{2}$$$$^{18}$$O as a tracer. Apparent diffusivities from the diffusion experiments and advection velosities and hydraulic dispersities from the electro-osmosis experiments were determined. The mass transport pathways were discussed by comparing with concentration profiles and peak positions of He, Na and Cl which were reported in the past. The hydraulic dispersities decreased in the order of He, H$$_{2}$$O, Cl and Na, and these differences were considered to be due to that transport pathway depended on species and hydraulic dispersity for each species also depended on transport pathway.

Journal Articles

Horonobe URL project; Present status and future plans

Matsui, Hiroya; Kurikami, Hiroshi; Kunimaru, Takanori; Morioka, Hiroshi; Hatanaka, Koichiro

Rock Mechanics; Meeting Society's Challenges and Demands, p.1193 - 1201, 2007/05

JAEA is developing two off-site underground research laboratory projects: one in sedimentary rock (Horonobe, Hokkaido) and the other in crystalline rock (Mizunami, Gifu) in Japan. Horonobe's URL project consists of three major phases: (1) surface-based investigation (Phase I); (2) construction (Phase II); and, (3) operation (Phase III). At present, Phase II has been started. In parallel, predictions of potential changes in the geological environment prevailing around the URL are in progress. This paper mainly gives an overview of the technical aspects covered by Phase I as well as presents the design for the URL. Future plans after Phase II are briefly introduced as well.

Journal Articles

Modeling of radionuclide migration through fractured rock in a HLW repository with multiple canisters

Lim, D.-H.*; Uchida, Masahiro; Hatanaka, Koichiro; Sawada, Atsushi

Materials Research Society Symposium Proceedings, Vol.1107, p.567 - 575, 2007/00

64 (Records 1-20 displayed on this page)