Refine your search:     
Report No.
 - 
Search Results: Records 1-16 displayed on this page of 16
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutronic design of basic cores of the new STACY

Izawa, Kazuhiko; Ishii, Junichi; Okubo, Takuya; Ogawa, Kazuhiko; Tonoike, Kotaro

Proceedings of 11th International Conference on Nuclear Criticality Safety (ICNC 2019) (Internet), 9 Pages, 2019/09

Japan Atomic Energy Agency, JAEA, is conducting the renewal program of the heterogeneous water moderated critical assembly STACY (Static Experiment Critical Facility) in order to verify the criticality calculation considering fuel debris which have been produced in the accident of Fukushima Daiichi Nuclear Power Station. The first criticality of the new STACY is scheduled at the beginning of 2021. After the first criticality, it is necessary to perform a series of critical experiments with a series of basic experimental core in order to gain a proficiency of operators and grasp the uncertainty that accompanies the result of critical experiments in STACY. Prior to the construction of the new STACY, a series of neutronic calculation was carried out for licensing and planning first series of critical experiment. In this paper, possible core configuration of the basic experimental core and their limitations are discussed and presented.

Journal Articles

Development of mineralization techniques for organic solvents by the silver mediated electrochemical oxidation process with the ultrasound agitation

Kobayashi, Fuyumi; Ishii, Junichi; Shirahashi, Koichi; Umeda, Miki; Sakuraba, Koichi

Kakuhan, Kongo Gijutsu To Toraburu Taisaku, p.341 - 344, 2014/10

The silver mediated electrochemical oxidation (Ag/MEO) process with the ultrasound agitation has been developed for the purpose of the mineralization of organic wastes containing transuranium nuclides at the nuclear fuel reprocessing process. In the Ag/MEO process, organic solvents are decomposed by divalent silver cations under the relatively low temperature and the ambient pressure condition. The ultrasound agitation is effective in mixing the electrolytic solutions and the organic solvents, and is expected to promote the oxidation of the organic solvents. Therefore, the Ag/MEO process with the ultrasound agitation could be a candidate for the treatment of organic solvents. Destruction tests of TBP and dodecane by the Ag/MEO process were conducted to optimize some treatment conditions. Under optimized conditions, the destruction tests of kerosene and TODGA were carried out. It was confirmed that the Ag/MEO process is effective for the mineralization of these organic solvents.

Journal Articles

Bipartite magnetic parent phases in the iron oxypnictide superconductor

Hiraishi, Masatoshi*; Iimura, Soshi*; Kojima, Kenji*; Yamaura, Junichi*; Hiraka, Haruhiro*; Ikeda, Kazutaka*; Miao, P.*; Ishikawa, Yoshihisa*; Torii, Shuki*; Miyazaki, Masanori*; et al.

Nature Physics, 10(4), p.300 - 303, 2014/04

 Times Cited Count:103 Percentile:95.46(Physics, Multidisciplinary)

JAEA Reports

Operation databook of the fuel treatment system of the Static Experiment Critical Facility (STACY) and the Transient Experiment Critical Facility (TRACY); JFY 2004 to JFY 2008

Kokusen, Junya; Sumiya, Masato; Seki, Masakazu; Kobayashi, Fuyumi; Ishii, Junichi; Umeda, Miki

JAEA-Technology 2012-041, 32 Pages, 2013/02

JAEA-Technology-2012-041.pdf:1.6MB

Uranyl nitrate solution fuel used in the STACY and the TRACY is adjusted in the Fuel Treatment System, in which such parameters are varied as concentration of uranium, free nitric acid, soluble neutron poison, and so on. Operations for concentration and denitration of the solution fuel were carried out with an evaporator from JFY 2004 to JFY 2008 in order to adjust the fuel to the experimental condition of the STACY and the TRACY. In parallel, the solution fuel in which some kinds of soluble neutron poison were doped was also adjusted in JFY 2005 and JFY 2006 for the purpose of the STACY experiments to determine neutron absorption effects brought by fission products, etc. After these experiments in the STACY, a part of the solution fuel including the soluble neutron poison was purified by the solvent extraction method with mixer-settlers in JFY 2006 and JFY 2007. This report summarizes operation data of the Fuel Treatment System from JFY 2004 to JFY 2008.

JAEA Reports

Enhancement of the methodology of repository design and post-closure performance assessment for preliminary investigation stage; Progress report on NUMO-JAEA collaborative research in FY2011 (Joint research)

Shibata, Masahiro; Sawada, Atsushi; Tachi, Yukio; Makino, Hitoshi; Hayano, Akira; Mitsui, Seiichiro; Taniguchi, Naoki; Oda, Chie; Kitamura, Akira; Osawa, Hideaki; et al.

JAEA-Research 2012-032, 298 Pages, 2012/09

JAEA-Research-2012-032.pdf:33.68MB

JAEA and NUMO have conducted a collaborative research work which is designed to enhance the methodology of repository design and performance assessment in preliminary investigation phase. The topics and the conducted research are follows; (1) Study on selection of host rock: in terms of hydraulic properties, items for assessing rock property, and assessment methodology of groundwater travel time has been organized with interaction from site investigation. (2) Study on development of scenario: the existing approach has been embodied, in addition, the phenomenological understanding regarding dissolution of and nuclide release from vitrified waste, corrosion of the overpack, long-term performance of the buffer are summarized. (3) Study on setting nuclide migration parameters: the approach for parameter setting has been improved for sorption and diffusion coefficient of buffer/rock, and applied and tested for parameter setting of key radionuclides. (4) Study on ensuring quality of knowledge: framework for ensuring quality of knowledge has been studied and examined aimed at the likely disposal facility condition.

JAEA Reports

Basic study on decontamination of TRU wastes with cerium mediated electrolytic oxidation method

Ishii, Junichi; Kobayashi, Fuyumi; Uchida, Shoji; Sumiya, Masato; Kida, Takashi; Shirahashi, Koichi; Umeda, Miki; Sakuraba, Koichi

JAEA-Technology 2009-068, 20 Pages, 2010/03

JAEA-Technology-2009-068.pdf:2.49MB

At Nuclear Fuel Cycle Safety Engineering Research Facility, the cerium mediated electrolytic oxidation method which is a decontamination technique to decrease the radioactivity of TRU wastes to the clearance-level has been developed for the effective reduction of TRU wastes generated from the decommissioning of a nuclear fuel reprocessing facility and so on. This method corrodes the oxide layer and the surface of metallic TRU metal wastes by the strong oxidation power of Ce$$^{4+}$$ in nitric acid. In this study, parameter tests were conducted to optimize the solution condition of Ce$$^{3+}$$ initial concentrations and nitric acid concentrations. The target corrosion rate of metallic TRU wastes set to be 2$$sim$$4$$ mu$$m/h for the practical use of this method. Under the optimized solution condition, a dissolution test of stainless steel simulating wastes was carried out. From the result of the dissolution test, the average corrosion rate was 3.3 $$mu$$m/h during the test time of 90 hours. Based on the supposition that the corrosion depth of metallic TRU wastes was 20 $$mu$$m enough to achieve the clearance-level, the treatment time for the decontamination was about 6 hours. It was confirmed from the result that the decontamination could be performed within one day and the decontamination solution could repeatedly reuse 15 times.

JAEA Reports

Basic study on the mineralization of organic solvents by the silver mediated electrochemical oxidation process with the ultrasound agitation

Kobayashi, Fuyumi; Ishii, Junichi; Shirahashi, Koichi; Umeda, Miki; Sakuraba, Koichi

JAEA-Technology 2009-056, 16 Pages, 2009/11

JAEA-Technology-2009-056.pdf:1.53MB

The silver mediated electrochemical oxidation (Ag/MEO) process with the ultrasound agitation has been developed for the purpose of the mineralization of organic wastes containing transuranium nuclides at the nuclear fuel reprocessing process. In the Ag/MEO process, organic solvents are decomposed by divalent silver cations under the relatively low temperature and the ambient pressure condition. The ultrasound agitation is effective in mixing the electrolytic solutions and the organic solvents, and is expected to promote the oxidation of the organic solvents. Therefore, the Ag/MEO process with the ultrasound agitation could be a candidate for the treatment of organic solvents. Destruction tests of TBP and dodecane by the Ag/MEO process were conducted to optimize some treatment conditions. Under optimized conditions, the destruction tests of kerosene and TODGA were carried out. It was confirmed that the Ag/MEO process is effective for the mineralization of these organic solvents.

Journal Articles

Flowsheet study of U-Pu Co-crystallization reprocessing system

Homma, Shunji*; Ishii, Junichi; Kikuchi, Toshiaki*; Chikazawa, Takahiro*; Shibata, Atsuhiro; Koyama, Tomozo; Koga, Jiro*; Matsumoto, Shiro*

Journal of Nuclear Science and Technology, 45(6), p.510 - 517, 2008/06

 Times Cited Count:11 Percentile:59.16(Nuclear Science & Technology)

U-Pu co-crystallization reprocessing system is proposed for LWR fuels and its flowsheet study is carried out. This reprocessing system is based on the experimental evidence indicating that hexavalent plutonium is co-crystallized with uranyl nitrate. The system consists of five steps: dissolution of spent fuel, Pu oxidation, U-Pu co-crystallization, dissolution of the crystals, and U crystallization. The system does not require organic solvent, expecting the enhancement of safety and cost-effectiveness. The system requires a recycling of the mother liquor from the U-Pu co-crystallization step to recover almost entire amount of U and Pu. The appropriate recycle ratio is determined for LWR fuels, such that the satisfactory decontamination is achieved. The mother liquor from the U re-crystallization step contains U and Pu. The flowsheet study shows that the constant ratio of Pu to U in the mother liquor can be controlled even though the composition of the spent fuel is different.

Journal Articles

Development of a fast multi-parameter data acquisition system for microbeam analyses

Sakai, Takuro; *; Hirao, Toshio; Kamiya, Tomihiro; *; *; Matsuyama, Shigeo*; *; Ishii, Keizo*

Nuclear Instruments and Methods in Physics Research B, 136-138, p.390 - 394, 1998/00

 Times Cited Count:18 Percentile:79.15(Instruments & Instrumentation)

no abstracts in English

Oral presentation

Enhanced electrochemical oxidation of spent organic solvent under ultrasonic agitation

Kobayashi, Fuyumi; Ishii, Junichi; Kimura, Akihiro; Sugikawa, Susumu

no journal, , 

no abstracts in English

Oral presentation

Study on U-Pu cocrystallization for reprocessing process

Shibata, Atsuhiro; Oyama, Koichi; Yano, Kimihiko; Nomura, Kazunori; Nakamura, Kazuhito; Koyama, Tomozo; Chikazawa, Takahiro*; Kikuchi, Toshiaki*; Ishii, Junichi; Homma, Shunji*; et al.

no journal, , 

no abstracts in English

Oral presentation

Basic study on decontamination of TRU wastes with cerium mediated electrolytic oxidation method

Ishii, Junichi; Kobayashi, Fuyumi; Uchida, Shoji; Sumiya, Masato; Umeda, Miki

no journal, , 

no abstracts in English

Oral presentation

A Tree diagram for compiling a methodology to evaluate suitability of host rock for geological disposal

Hayano, Akira; Sawada, Atsushi; Goto, Junichi*; Ishii, Eiichi*; Moriya, Toshifumi*; Inagaki, Manabu*; Kubota, Shigeru*; Ebashi, Takeshi*

no journal, , 

Detailed Investigation Areas have to be selected with focusing on suitability of the host rock in the siting process for high-level radioactive waste disposal in Japan. The suitability of the host rock is evaluated in terms of the preferable disposal condition such as thermal, hydraulic, mechanical and geochemical condition, and the feasibility of the geological disposal project relevant to volumetric capacity of host rock and economics, based on the site model. However, due to a limited number of surveys at relatively early stage of the investigation, the lack of understanding of geological environment at the site causes an uncertainty of the site model. It is essential to clarify an association the important factors relevant to safety assessment (SA) and a repository design (Design) with the information obtained by the site investigation through the site model. In this study, the methodology not only for defining evaluation factors relevant to SA in term of hydrogeology, but also for visualizing the methods to evaluate the factors through the site model is organized into a tree diagram. A method to evaluate groundwater travel time which is one of evaluation factors in granitic rock is organized into a first version of the tree diagram.

Oral presentation

Evaluation of criticality safety measures for fuel storage of critical assemblies in STACY

Ishii, Junichi; Izawa, Kazuhiko; Okubo, Takuya; Ogawa, Kazuhiko

no journal, , 

For compliance with the new regulatory requirements in Japan, the Static Critical Experiment Facility (STACY) has been remodeling the existing fuel storages. In the remodeling, the existing fuel storage spaces, to which shape and dimension management are applied, are designed to add a neutron absorber for the critical control, taking into account the case of shape and dimension collapse. In order to confirm the validity of the criticality safety design, subcritical calculations were performed. In the calculations, the Japanese Evaluated Nuclear Data Library, JENDL-3.2, was used to cross reference the data. The neutron multiplication factor was calculated using a continuous-energy Monte Carlo code, MVP, and PIJ code in the SRAC code system. It has been confirmed from the results that all fuel storages comply with the safety criteria required to ensure subcriticality.

Oral presentation

Improvement of the STACY critical assembly to measure critical characteristics of fuel debris, 1; Overview and progress of the modified STACY

Araki, Shohei; Izawa, Kazuhiko; Gunji, Satoshi; Suyama, Kenya; Ishii, Junichi; Seki, Masakazu; Kobayashi, Fuyumi; Fukaya, Hiroyuki

no journal, , 

To measure critical characteristics of fuel debris, the Static Experiment Critical Facility (STACY) is being converted to the heterogeneous thermal system using fuel rods and light water moderator from the homogeneous system using solution fuel. This report presents an overview and progress of the modified STACY.

Oral presentation

Modification of STACY for study of criticality characteristics of fuel debris, 6; Progress on manufacture and construction of the modified STACY

Maekawa, Tomoyuki; Seki, Masakazu; Sumiya, Masato; Araki, Shohei; Murakami, Takahiko; Hasegawa, Kenta; Yoshikawa, Tomoki; Mori, Takashi*; Ishii, Junichi; Kobayashi, Fuyumi; et al.

no journal, , 

As previously reported, to clarify critical characteristics of fuel debris, the Static Experiment Critical Facility (STACY) is being converted to the heterogenous thermal system using fuel rods and light water moderator from the homogenous system using solution fuel. Seismic reinforcement of the support structure of the core tank started in 2022. This report presents progress on manufacture and construction of the modified STACY in 2021 and 2022.

16 (Records 1-16 displayed on this page)
  • 1