Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Quantitative measurements of element distributions using the neutron-transmission resonance-absorption method

Harada, Masahide; Parker, J. D.*; Sawano, Tatsuya*; Kubo, Hidetoshi*; Tanimori, Toru*; Shinohara, Takenao; Maekawa, Fujio; Sakai, Kenji

Physics Procedia, 43, p.314 - 322, 2013/00

 Times Cited Count:1 Percentile:53.27(Physics, Applied)

The purposes of this study are to perform Neutron Resonance Absorption NRA test experiments using the Micro Pixel Chamber, and to confirm its quantitativity. The detector was located at 14.5 m from the moderator in the experimental room of NOBORU. The samples, consisting of thin Tantalum (Ta) foils, with thicknesses of 5, 10, 20 and 100 $$mu$$m, were placed individually at 15 cm upstream from the detector. In the experiment, the transmission spectra with the Ta samples and no sample were obtained. Background components were not so small in these measurements. From the neutron transport simulation, it was surmised that the origin of this background was due to scattering of neutrons in the experimental room. Therefore, the assumed background components were subtracted from the measurement data. Finally, it was found that the difference between the measurement data and the nuclear data was within about 7%.

Journal Articles

Current status of the control system for J-PARC accelerator complex

Yoshikawa, Hiroshi; Sakaki, Hironao; Sako, Hiroyuki; Takahashi, Hiroki; Shen, G.; Kato, Yuko; Ito, Yuichi; Ikeda, Hiroshi*; Ishiyama, Tatsuya*; Tsuchiya, Hitoshi*; et al.

Proceedings of International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS '07) (CD-ROM), p.62 - 64, 2007/10

J-PARC is a large scale facility of the proton accelerators for the multi-purpose of scientific researches in Japan. This facility consists of three accelerators and three experimental stations. Now, J-PARC is under construction, and LINAC is operated for one year, 3GeV synchrotron has just started the commissioning in this October the 1st. The completion of this facility will be next summer. The control system of accelerators established fundamental performance for the initial commissioning. The most important requirement to the control system of this facility is to minimize the activation of accelerator devices. In this paper, we show that the performances of each layer of this control system have been achieved in the initial stage.

Oral presentation

Measurement of two-dimensional material distributions using the neutron-transmission resonance-absorption method

Harada, Masahide; Parker, J.*; Sawano, Tatsuya*; Kubo, Hidetoshi*; Tanimori, Toru*; Shinohara, Takenao; Maekawa, Fujio

no journal, , 

no abstracts in English

Oral presentation

Quantitative measurements of material distributions using the neutron-transmission resonance-absorption method

Harada, Masahide; Parker, J.*; Sawano, Tatsuya*; Kubo, Hidetoshi*; Tanimori, Toru*; Shinohara, Takenao; Maekawa, Fujio

no journal, , 

no abstracts in English

Oral presentation

Quantitative measurements of element distributions using neutron-transmission resonance-absorption method

Harada, Masahide; Parker, J.*; Sawano, Tatsuya*; Kubo, Hidetoshi*; Tanimori, Toru*; Shinohara, Takenao; Maekawa, Fujio

no journal, , 

Oral presentation

Application of Electron Tracking Compton Camera (ETCC) in medical imaging

Sonoda, Shinya*; Nabeya, Akira*; Kimura, Hiroyuki*; Kabuki, Shigeto*; Takada, Atsushi*; Kubo, Hidetoshi*; Komura, Shotaro*; Tanimori, Toru*; Matsuoka, Yoshihiro*; Mizumura, Yoshitaka*; et al.

no journal, , 

SPECT and PET are widely used for medical imaging. However, radio isotopes available for SPECT and PET are limited. Under these circumstances, it is expected the appearance of the new $$gamma$$ imaging detector which can measure more various kinds of $$gamma$$-ray sources in order to develop new biomarkers using new radio isotopes. We set out to contribute to medical imaging technology by developing Electron-Tracking Compton Camera (ETCC) which can measure the various radioactive medicine.

6 (Records 1-6 displayed on this page)
  • 1