Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 33

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Maintenance of helium refrigerator/liquefier system in ITER CS Model Coil Test Facility

Ebisawa, Noboru; Kiuchi, Shigeki*; Kikuchi, Katsumi*; Kawano, Katsumi; Isono, Takaaki

JAEA-Testing 2014-003, 37 Pages, 2015/03

JAEA-Testing-2014-003.pdf:11.7MB

Objective of the ITER CS Model Coil Test Facility is to evaluate a large scale superconducting conductor for fusion using the Central Solenoid (CS) Model Coil, which can generate a 13-T magnetic field in the inner bore with a 1.5m diameter. The facility is composed of a helium refrigerator / liquefier system, a DC power supply system, a vacuum system and a data acquisition system. This report describes that maintenance of the helium refrigerator / liquefier system since the Great East Japan Earthquake in March 2011 until the first operation after the earthquake in December 2012.

JAEA Reports

Disassembly of the NBI system on JT-60U for JT-60 SA

Akino, Noboru; Endo, Yasuei; Hanada, Masaya; Kawai, Mikito*; Kazawa, Minoru; Kikuchi, Katsumi*; Kojima, Atsushi; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; et al.

JAEA-Technology 2014-042, 73 Pages, 2015/02

JAEA-Technology-2014-042.pdf:15.1MB

According to the project plan of JT-60 Super Advanced that is implemented as an international project between Japan and Europe, the neutral beam (NB) injectors have been disassembled. The disassembly of the NB injectors started in November, 2009 and finished in January, 2012 without any serious problems as scheduled. This reports the disassembly activities of the NB injectors.

Journal Articles

Progress in development and design of the neutral beam injector for JT-60SA

Hanada, Masaya; Kojima, Atsushi; Tanaka, Yutaka; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; et al.

Fusion Engineering and Design, 86(6-8), p.835 - 838, 2011/10

 Times Cited Count:10 Percentile:64.25(Nuclear Science & Technology)

Neutral beam (NB) injectors for JT-60 Super Advanced (JT-60SA) have been designed and developed. Twelve positive-ion-based and one negative-ion-based NB injectors are allocated to inject 30 MW D$$^{0}$$ beams in total for 100 s. Each of the positive-ion-based NB injector is designed to inject 1.7 MW for 100s at 85 keV. A part of the power supplies and magnetic shield utilized on JT-60U are upgraded and reused on JT-60SA. To realize the negative-ion-based NB injector for JT-60SA where the injection of 500 keV, 10 MW D$$^{0}$$ beams for 100s is required, R&Ds of the negative ion source have been carried out. High-energy negative ion beams of 490-500 keV have been successfully produced at a beam current of 1-2.8 A through 20% of the total ion extraction area, by improving voltage holding capability of the ion source. This is the first demonstration of a high-current negative ion acceleration of $$>$$1 A to 500 keV. The design of the power supplies and the beamline is also in progress. The procurement of the acceleration power supply starts in 2010.

Journal Articles

Development of the JT-60SA Neutral Beam Injectors

Hanada, Masaya; Kojima, Atsushi; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; Kazawa, Minoru; et al.

AIP Conference Proceedings 1390, p.536 - 544, 2011/09

 Times Cited Count:7 Percentile:84.85

no abstracts in English

Journal Articles

Achievement of 500 keV negative ion beam acceleration on JT-60U negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Nuclear Fusion, 51(8), p.083049_1 - 083049_8, 2011/08

 Times Cited Count:51 Percentile:88.57(Physics, Fluids & Plasmas)

Hydrogen negative ion beams of 490 keV, 3 A and 510 keV, 1 A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60SA and ITER.

Journal Articles

Demonstration of 500 keV beam acceleration on JT-60 negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Hydrogen negative ion beams of 490keV, 3A and 510 keV, 1A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of $$sim$$ 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60 SA and ITER.

Journal Articles

Development and design of the negative-ion-based NBI for JT-60 Super Advanced

Hanada, Masaya; Akino, Noboru; Endo, Yasuei; Inoue, Takashi; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; Komata, Masao; Kojima, Atsushi; Mogaki, Kazuhiko; et al.

Journal of Plasma and Fusion Research SERIES, Vol.9, p.208 - 213, 2010/08

A large negative ion source with an ion extraction area of 110 cm $$times$$ 45 cm has been developed to produce 500 keV, 22 A D$$^{-}$$ ion beams required for JT-60 Super Advanced. To realize the JT-60SA negative ion source, the JT-60 negative ion source has been modified and tested on the negative-ion-based neutral beam injector on JT-60U. A 500 keV H$$^{-}$$ ion beam has been produced at 3 A without a significant degradation of beam optics. This is the first demonstration of a high energy negative ion acceleration of more than one-ampere to 500 keV in the world. The beam current density of 90 A/m$$^{2}$$ is being increased to meet 130 A/m$$^{2}$$ of the design value for JT-60SA by tuning the operation parameters. A long pulse injection of 30 s has been achieved at a injection D$$^{0}$$ power of 3 MW. The injection energy, defined as the product of the injection time and power, reaches 80 MJ by neutralizing a 340 keV, 27 A D$$^{-}$$ ion beam produced with two negative ion sources.

JAEA Reports

Modification of the drift ducts reionization loss estimation for JT-60U NBI

Kawai, Mikito; Akino, Noboru; Ikeda, Yoshitaka; Ebisawa, Noboru; Honda, Atsushi; Kazawa, Minoru; Kikuchi, Katsumi; Mogaki, Kazuhiko; Noto, Katsuya; Oshima, Katsumi; et al.

JAEA-Technology 2008-069, 32 Pages, 2008/10

JAEA-Technology-2008-069.pdf:6.75MB

The neutral beam injection system for JT-60U consists of positive-ion based type(P-NBI) and negative-ion based type(N-NBI). The reionization losses of neutral beams in the drift ducts of both P-NBI and N-NBI are estimated using the data of ambient pressure and gas flow rate into the beamlines. This system was not enough to obtain detail injection power for a long pulse operation. Modifications of the system to obtain reionization loss for a long pulse operation have been conducted. The new system has a capability to measure the pressures of drift duct during operation. The system can calculate the reionization loss automatically during the pulse from the measured pressure. More acurate injection power can be obtained by this new system.

Journal Articles

Recent R&D activities of negative-ion-based ion source for JT-60SA

Ikeda, Yoshitaka; Hanada, Masaya; Kamada, Masaki; Kobayashi, Kaoru; Umeda, Naotaka; Akino, Noboru; Ebisawa, Noboru; Inoue, Takashi; Honda, Atsushi; Kawai, Mikito; et al.

IEEE Transactions on Plasma Science, 36(4), p.1519 - 1529, 2008/08

 Times Cited Count:11 Percentile:41.29(Physics, Fluids & Plasmas)

The JT-60SA N-NBI system is required to inject 10 MW for 100 s at 500 keV. Three key issues should be solved for the JT-60SA N-NBI ion source. One is to improve the voltage holding capability. Recent R&D tests suggested that the accelerator with a large area of grids may need a high margin in the design of electric field and a long time for conditioning. The second issue is to reduce the grid power loading. It was found that some beamlets were strongly deflected due to beamlet-beamlet interaction and strike on the grounded grid. The grids are to be designed by taking account of beamlet-beamlet interaction in three-dimensional simulation. Third is to maintain the D- production for 100 s. A simple cooling structure is proposed for the active cooled plasma grid, where a key is the temperature gradient on the plasma grid for uniform D- production. The modified N-NBI ion source will start on JT-60SA in 2015.

JAEA Reports

Update of control system for auxiliary pumping and primary water cooling facilities in JT-60 NBI

Kikuchi, Katsumi; Akino, Noboru; Ebisawa, Noboru; Ikeda, Yoshitaka; Seki, Norikazu*; Takenouchi, Tadashi; Tanai, Yutaka

JAEA-Technology 2008-034, 25 Pages, 2008/04

JAEA-Technology-2008-034.pdf:3.7MB

The control system for auxiliary pumping facility and primary water cooling facility in JT-60 NBI was updated. To realize the cost reduction, the control system with many input and outputs of 2000 was updated by JAEA itself using commercial Programmable Logic Controllers (PLC's). JAEA also made software with 3600 ladder lines by JAEA itself based on commercial basic programs. In addition to the simple replacement of the hardware and software, the function of remote operation has been newly added. At present, the auxiliary pumping facility and the primary water cooling facility have been stably operated without troubles. The remote operation enables to collect the detailed information on the trouble more easily, resulting in a quick countermeasure for the trouble.

Journal Articles

Application of PLC to dynamic control system for liquid He cryogenic pumping facility on JT-60U NBI system

Honda, Atsushi; Okano, Fuminori; Oshima, Katsumi; Akino, Noboru; Kikuchi, Katsumi; Tanai, Yutaka; Takenouchi, Tadashi; Numazawa, Susumu*; Ikeda, Yoshitaka

Fusion Engineering and Design, 83(2-3), p.276 - 279, 2008/04

 Times Cited Count:11 Percentile:59.25(Nuclear Science & Technology)

The control system of the cryogenic facility in the JT-60 NBI system has been renewed by employing the PLC (Programmable Logic Controller) and SCADA (Supervisory Control And Data Acquisition) system. The original control system was constructed about 20 years ago by specifying the DCS (Distributed Control System) computer to deal with 400 feedback loops. Recently, troubles on this control system have increased due to its aged deterioration. To maintain a high reliability of the cryogenic facility, a new control system has been intended with PLC and SCADA system. By optimizing the function blocks and connecting them in the FBD language, the feedback loops in the new control system have been successfully replaced from DCS to PLC without software developer. At present, the new control system has worked well. This is the first application of the marketable PLC to the actual system with feedback loops of $$>$$ 400 produced by the user itself.

Journal Articles

Long pulse production of high current D$$^{-}$$ ion beams in the JT-60 negative ion source

Hanada, Masaya; Kamada, Masaki; Akino, Noboru; Ebisawa, Noboru; Honda, Atsushi; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; Komata, Masao; Mogaki, Kazuhiko; et al.

Review of Scientific Instruments, 79(2), p.02A519_1 - 02A519_4, 2008/02

 Times Cited Count:6 Percentile:32.39(Instruments & Instrumentation)

A long pulse production of high-current, high-energy D$$^{-}$$ ion beams was studied in the JT-60U negative ion source that was designed to produce 22 A, 500 keV D$$^{-}$$ ion beams. Prior to the long pulse production, the short pulse beams were produced to examine operational ranges for a stable voltage holding capability and an allowable grid power loading. From a correlation between the voltage holding capability and a light intensity of cathodoluminescence from the insulator made of Fiber Reinforced Plastic insulator, the voltage holding was found to be stable at $$<$$ 340 kV where the light was sufficiently suppressed. The grid power loading for the long pulse operation was also decreased to the allowable level of $$<$$ 1 MW without a significant reduction of the beam power by tuning the extraction voltage (Vext) and the arc power (Parc). These allow the production of 30 A D$$^{-}$$ ion beams at 340 keV from two ion sources at Vacc = 340 kV. The pulse length was extended step by step, and finally reached up to 21 s, where the beam pulse length was limited by the surface temperature of the beam scraper without water cooling. The D$$^{-}$$ ion beams were neutralized to via a gas cell, resulting in a long pulse injection of 3.2 MW D$$^{0}$$ beams for 21 s. This is the first long injection of $$>$$ 20 s in a power range of $$>$$ 3 MW.

Journal Articles

Technical design of NBI system for JT-60SA

Ikeda, Yoshitaka; Akino, Noboru; Ebisawa, Noboru; Hanada, Masaya; Inoue, Takashi; Honda, Atsushi; Kamada, Masaki; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; et al.

Fusion Engineering and Design, 82(5-14), p.791 - 797, 2007/10

 Times Cited Count:20 Percentile:79.69(Nuclear Science & Technology)

Modification of JT-60U to a superconducting device (so called JT-60SA) has been planned to contribute to ITER and DEMO. The NBI system is required to inject 34 MW for 100 s. The upgraded NBI system consists of twelve positive ion based NBI (P-NBI) units and one negative ion based NBI (N-NBI) unit. The injection power of the P-NBI units are 2 MW each at 85 keV, and the N-NBI unit will be 10 MW at 500 keV, respectively. On JT-60U, the long pulse operation of 30 s at 2 MW (85 keV) and 20 s at 3.2 MW (320 keV) have been achieved on P-NBI and N-NBI units, respectively. Since the temperature increase of the cooling water in both ion sources is saturated within 20 s, further pulse extension up to 100 s is expected to mainly modify the power supply systems in addition to modification of the N-NBI ion source for high acceleration voltage. The detailed technical design of the NBI system for JT-60SA is presented.

Journal Articles

Correlation between voltage holding capability and light emission in a 500 keV electrostatic accelerator utilized for fusion application

Hanada, Masaya; Ikeda, Yoshitaka; Kamada, Masaki; Kikuchi, Katsumi; Komata, Masao; Mogaki, Kazuhiko; Umeda, Naotaka; Usui, Katsutomi; Grisham, L. R.*; Kobayashi, Shinichi*

IEEE Transactions on Dielectrics and Electrical Insulation, 14(3), p.572 - 576, 2007/06

 Times Cited Count:5 Percentile:33.69(Engineering, Electrical & Electronic)

Voltage holding capability of a 500 keV 22 A negative ion accelerator for JT-60U was experimentally examined. Voltage holding capability was strongly correlated with intensity of the light emitted inside the accelerator by applying the acceleration voltage. Namely, stable voltage holding was realized when the light emission was well suppressed. To examine the origin of the light emission, the correlation between the light intensity and the dark current was measured. The light intensity was linearly varied with the dark current. Further, it was indicated from the direction of the dark current that electrons were emitted from cathode grids by applying the acceleration voltage. In addition, the spectroscopy measurement of the light showed that the light had a broad peak at 420 nm. No particular spectra of hydrogen, oxygen and carbon have been observed. Therefore, the light emission seemed to be originated by electron excitation of FRP itself. From these results, it was thought that the voltage holding capability of the JT-60U negative ion accelerator could be improved by suppressing the electron emission from the cathode grids.

JAEA Reports

Characteristics of voltage holding and light emission on the accelerator of JT-60U N-NBI ion source

Kikuchi, Katsumi; Akino, Noboru; Hanada, Masaya; Ikeda, Yoshitaka; Kamada, Masaki; Kawai, Mikito; Mogaki, Kazuhiko; Noto, Katsuya; Usui, Katsutomi

JAEA-Technology 2007-027, 17 Pages, 2007/03

JAEA-Technology-2007-027.pdf:2.3MB

Voltage holding capability of the 500 kV accelerator in the JT-60 negative ion source that is one of the key issues for high performance of the JT-60 negative-ion-based NBI system was investigated. The achieved voltage holding capabilities with and without the beam acceleration were 400 kV and 455 kV, respectively. To understand a poor voltage holding capability of the negative ion source, correlation between the voltage holding capability and the light emitted inside the ion source was carefully examined. The acceleration voltage was stably applied at $$<$$ 400kV, where the light intensity was almost zero. Increasing the acceleration voltage beyond 400 kV, the voltage holding become very unstable where the light intensity increases in proportion to the acceleration voltage. The spectroscopy measurement showed that the light spectrum was a broad wavelength of 360 - 500 nm peaked at 420 nm. There was no line spectrum due to the gas discharge such as hydrogen, oxygen, carbon. From these results, it is seemed that the origin of the light emission is a cathode luminescence from the FRP (Fiberglass Reinforced Plastic) insulator in JT-60 negative ion source due to the electron impact. Moreover, breakdown phenomena at inside and outside of the ion source were examined by using photo-multipliers with fast data acquisition system. When the breakdown occurred inside the ion source, the breakdowns sequentially occurred at the spark gap switches outside of the ion source, which protect the FRP insulator from the flashover on its surface. Once the spark gap was turned on after the breakdown inside the ion source, the breakdowns at the spark gap occurred at lower voltage than the normal set value when the high voltage was applied again after $$sim$$70 ms interval. This result indicates that the voltage holding capability was limited by the spark gap switches in this operational sequence.

Journal Articles

Present status of the negative ion based NBI system for long pulse operation on JT-60U

Ikeda, Yoshitaka; Umeda, Naotaka; Akino, Noboru; Ebisawa, Noboru; Grisham, L. R.*; Hanada, Masaya; Honda, Atsushi; Inoue, Takashi; Kawai, Mikito; Kazawa, Minoru; et al.

Nuclear Fusion, 46(6), p.S211 - S219, 2006/06

 Times Cited Count:58 Percentile:87.29(Physics, Fluids & Plasmas)

Recently, the extension of the pulse duration up to 30 sec has been intended to study quasi-steady state plasma on JT-60U N-NBI system. The most serious issue is to reduce the heat load on the grids for long pulse operation. Two modifications have been proposed to reduce the heat load. One is to suppress the beam spread which may be caused by beamlet-beamlet interaction in the multi-aperture grid due to the space charge force. Thin plates were attached on the extraction grid to modify the local electric field. The plate thickness was optimized to steer the beamlet deflection. The other is to reduce the stripping loss, where the electron of the negative ion beam is stripped and accelerated in the ion source and then collides with the grids. The ion source was modified to reduce the pressure in the accelerator column to suppress the beam-ion stripping loss. Up to now, long pulse injection of 17 sec for 1.6 MW and 25 sec for $$sim$$1 MW has been obtained by one ion source with these modifications.

JAEA Reports

PLC control of NBI cryogenic facility on JT-60U

Honda, Atsushi; Okano, Fuminori; Oshima, Katsumi; Akino, Noboru; Kikuchi, Katsumi; Tanai, Yutaka; Takenouchi, Tadashi; Numazawa, Susumu*

JAEA-Technology 2006-020, 20 Pages, 2006/03

JAEA-Technology-2006-020.pdf:2.96MB

no abstracts in English

JAEA Reports

Characteristics of voltage holding and outgassing on the accelerator of JT-60 N-NBI ion source

Kikuchi, Katsumi; Akino, Noboru; Ikeda, Yoshitaka; Usui, Katsutomi; Umeda, Naotaka; Oga, Tokumichi; Kawai, Mikito; Mogaki, Kazuhiko

JAEA-Technology 2006-016, 25 Pages, 2006/03

JAEA-Technology-2006-016.pdf:2.54MB

The 500 keV negative-ion based neutral beam injector (NBI) has been operated to heat plasma and drive plasma current on JT-60U since 1996. The ion source was designed to accelerate the negative ions up to 500 keV. During the last 10 years, the accelerated voltage of the negative ion beam has been limited to $$sim$$400 keV by breakdowns in the accelerator. To understand the breakdown phenomena, the characteristics of the voltage holding of the ion source were studied without beam extraction. Outgassing with the main species of m/e=28 was observed when high voltage was applied even without breakdowns. It was noticed that the fraction of the main species at breakdown was almost the same as without breakdowns. Conditioning reduced the outgassing and resulted in improvement of the voltage holding capability. Inside the ion source, a brightening was observed even without breakdown. The brightening intensity was suppressed by increasing the D$$_{2}$$ pressure in the accelerator in the range of 10$$^{-4}$$ Pa to 0.5 Pa. Since the voltage holding was also improved with D$$_{2}$$ pressure, breakdowns seemed to correlate with the brightening phenomena in the accelerator. This report gives the preliminary results of outgassing and brightening measurements when the high voltage was applied on the accelerator without beam extraction.

Journal Articles

Application of PLC to dynamic feedback control of a large liquid-He refrigerator system on nuclear fusion facility

Okano, Fuminori; Honda, Atsushi; Oshima, Katsumi; Akino, Noboru; Kikuchi, Katsumi; Numazawa, Susumu*

Keiso, 49(3), p.22 - 26, 2006/03

no abstracts in English

Journal Articles

Recent progress of negative ion based neutral beam injector for JT-60U

Umeda, Naotaka; Yamamoto, Takumi; Hanada, Masaya; Grisham, L. R.*; Kawai, Mikito; Oga, Tokumichi; Akino, Noboru; Inoue, Takashi; Kazawa, Minoru; Kikuchi, Katsumi*; et al.

Fusion Engineering and Design, 74(1-4), p.385 - 390, 2005/11

 Times Cited Count:9 Percentile:53.26(Nuclear Science & Technology)

In negative ion based neutral beam injector (N-NBI) for JT-60U, some modifications for extent pulse duration from 10 second, which is design value, to 30 second was conducted. Main limit to prevent pulse extension was heat loads onto grounded grid in an ion source and onto beam limiter placed at 22 m from the ion source. To reduce these heat loads, beam extraction area was optimized and the limiter was changed to one which had about twice thermal capacity. As a result of these modifications, the temperature rise of the water which was cooling grounded grid could be suppressed under 40 degree, which can operate in steady state condition. The temperature rise of the limiter could be restricted to 60%. Untill now the beam pulse extended to 17 second of 1.6MW power at 366keV energy, and injection of 30 seconds will be achieved in next experiment.

33 (Records 1-20 displayed on this page)