Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 94

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Microstructural evolution in tungsten binary alloys under proton and self-ion irradiations at 800$$^{circ}$$C

Miyazawa, Takeshi; Kikuchi, Yuta*; Ando, Masami*; Yu, J.-H.*; Yabuuchi, Kiyohiro*; Nozawa, Takashi*; Tanigawa, Hiroyasu*; Nogami, Shuhei*; Hasegawa, Akira*

Journal of Nuclear Materials, 575, p.154239_1 - 154239_11, 2023/03

 Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)

Journal Articles

Effect of uniaxial tensile strain on binding energy of hydrogen atoms to vacancy-carbon-hydrogen complexes in $$alpha$$-iron

Hirayama, Shintaro*; Sato, Koichi*; Kato, Daiji*; Iwakiri, Hirotomo*; Yamaguchi, Masatake; Watanabe, Yoshiyuki*; Nozawa, Takashi*

Nuclear Materials and Energy (Internet), 31, p.101179_1 - 101179_9, 2022/06

 Times Cited Count:4 Percentile:66.21(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Overview of accident-tolerant fuel R&D program in Japan

Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kurata, Masaki; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Sato, Daiki*; Murakami, Nozomu*; et al.

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.206 - 216, 2019/09

After the nuclear accident at Fukushima Daiichi Power Plant, research and development (R&D) program for establishing technical basis of accident-tolerant fuel (ATF) started from 2015 in Japan. Since then, both experimental and analytical studies necessary for designing a new light water reactor (LWR) core with ATF candidate materials are being conducted within the Japanese ATF R&D Consortium for implementing ATF to the existing LWRs, accompanying with various technological developments required. Until now, we have accumulated experimental data of the candidate materials by out-of-pile tests, developed fuel evaluation codes to apply to the ATF candidate materials, and evaluated fuel behavior simulating operational and accidental conditions by the developed codes. In this paper, the R&D progresses of the ATF candidate materials considered in Japan are reviewed based on the information available such as proceedings of international conference and academic papers, providing an overview of ATF program in Japan.

Journal Articles

Technical basis of accident tolerant fuel updated under a Japanese R&D project

Yamashita, Shinichiro; Nagase, Fumihisa; Kurata, Masaki; Nozawa, Takashi; Watanabe, Seiichi*; Kirimura, Kazuki*; Kakiuchi, Kazuo*; Kondo, Takao*; Sakamoto, Kan*; Kusagaya, Kazuyuki*; et al.

Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09

In Japan, the research and development (R&D) project on accident tolerant fuel and other components (ATFs) of light water reactors (LWRs) has been initiated in 2015 for establishing technical basis of ATFs. The Japan Atomic Energy Agency (JAEA) has coordinated and carried out this ATF R&D project in cooperation with power plant providers, fuel venders and universities for making the best use of the experiences, knowledges in commercial uses of zirconium-base alloys (Zircaloy) in LWRs. ATF candidate materials under consideration in the project are FeCrAl steel strengthened by dispersion of fine oxide particles(FeCrAl-ODS) and silicon carbide (SiC) composite, and are expecting to endure severe accident conditions in the reactor core for a longer period of time than the Zircaloy while maintaining or improving fuel performance during normal operations. In this paper, the progresses of the R&D project are reported.

Journal Articles

Effect of helium on irradiation creep behavior of B-doped F82H irradiated in HFIR

Ando, Masami; Nozawa, Takashi; Hirose, Takanori; Tanigawa, Hiroyasu; Wakai, Eiichi; Stoller, R. E.*; Myers, J.*

Fusion Science and Technology, 68(3), p.648 - 651, 2015/10

 Times Cited Count:4 Percentile:32.95(Nuclear Science & Technology)

Pressurized tubes of F82H and B-doped F82H irradiated at 573 and 673 K up to $$sim$$6dpa have been measured by a laser profilometer. The irradiation creep strain in F82H irradiated at 573 and 673 K was almost linearly dependent on the effective stress level for stresses below 260 MPa and 170 MPa, respectively. The creep strain of $$^{10}$$BN-F82H was similar to that of F82H IEA at each effective stress level except 294 MPa at 573 K irradiation. For 673 K irradiation, the creep strain of some $$^{10}$$BN-F82H tubes was larger than that of F82H tubes. It is suggested that a swelling caused in each $$^{10}$$BN-F82H because small helium babbles might be produced by a reaction of $$^{10}$$B(n, $$alpha$$) $$^{7}$$Li.

Journal Articles

Evaluation of damage accumulation behavior and strength anisotropy of NITE SiC/SiC composites by acoustic emission, digital image correlation and electrical resistivity monitoring

Nozawa, Takashi; Ozawa, Kazumi; Asakura, Yuki*; Koyama, Akira*; Tanigawa, Hiroyasu

Journal of Nuclear Materials, 455(1-3), p.549 - 553, 2014/12

 Times Cited Count:15 Percentile:74.45(Materials Science, Multidisciplinary)

SiC/SiC composite is a promising candidate material of fusion DEMO reactor. This paper aims to identify its damage tolerance and strength anisotropy by various characterization techniques such as acoustic emission (AE) monitoring, electrical resistivity (ER) measurement, and digital image correlation (DIC). The AE results identified that damage accumulation initiated prior to the proportional limit stress (PLS) by both tensile and compressive loadings for 2D composites. The preliminary AE waveform analysis implied that this AE detect strength corresponds to initiation of micro-cracking but the stress-strain curve shows further linearity due to the strong interfacial friction. Then fiber sliding occurred near the PLS, followed by the non-linearlity of the curve. The preliminary tensile test results using a notched specimen also suggest notch insensitivity of the composites in any loading directions. The detailed failure mechanism will eventually be discussed with ER and DIC results.

Journal Articles

Evaluation methods of the failure behavior of SiC/SiC composites with a scope of their application under severe environments

Nozawa, Takashi

Seramikkusu, 49(12), p.1034 - 1039, 2014/12

The small specimen test technique is a viable method for nuclear reactor materials irradiation because of reducing irradiation volume, radioactivity, and waste. It is important to develop the evaluation method to consider unique failure behavior of composites since composites generally show anisotropy due to discontinuity among various constituents with finite size. This paper reviewed recent progress of failure evaluation by various modes and summarized requirements and issues about the small specimen test techniques for composites. Finally, we discussed future perspectives of the small specimen test techniques toward standardization.

Journal Articles

Physical properties of F82H for fusion blanket design

Hirose, Takanori; Nozawa, Takashi; Stoller, R. E.*; Hamaguchi, Dai; Sakasegawa, Hideo; Tanigawa, Hisashi; Tanigawa, Hiroyasu; Enoeda, Mikio; Kato, Yutai*; Snead, L. L.*

Fusion Engineering and Design, 89(7-8), p.1595 - 1599, 2014/10

 Times Cited Count:47 Percentile:96.6(Nuclear Science & Technology)

The material properties, focusing on the properties used for design analysis were re-assessed and newly investigated for various heats including F82H-IEA. Moreover, irradiation effects on those properties were studied in this work. As for thermal properties, thermal conductivity that has significant impacts on the thermo-hydraulic properties of the blanket was investigated on several heats of F82H including F82H-IEA. According to the measurements, the thermal conductivity falls in the range 28.3$$pm$$1.1 W/m/K at 293 K. Although this is comparable with that of the other ferritic/martensitic steels, it is 20% lower than the published value for F82H-IEA. The re-assessment on the published value revealed that the thermal diffusivity was over-estimated. As for irradiation effects on the physical properties, electric resistivity was measured after irradiation up to 6 dpa at 573 K and 673 K. The reduction of resistivity in F82H and its welds were 3% and 6%, respectively.

Journal Articles

Stress envelope of silicon carbide composites at elevated temperatures

Nozawa, Takashi; Kim, S.*; Ozawa, Kazumi; Tanigawa, Hiroyasu

Fusion Engineering and Design, 89(7-8), p.1723 - 1727, 2014/10

 Times Cited Count:9 Percentile:57.01(Nuclear Science & Technology)

A SiC/SiC composite is a promising candidate material for the advanced fusion DEMO blanket. For the design of the DEMO, the stability of high-temperature strength of SiC/SiC composites needs to be identified. Additionally, strength anisotropy needs to be clarified because of its unique fabric architecture. This study therefore aims to evaluate mechanical properties by various modes at elevated temperatures, eventually providing a stress envelope for the design. A P/W Tyranno-SA3 fiber reinforced CVI SiC matrix composite with multilayered SiC/PyC interface was evaluated in this study. Tensile and compressive tests were conducted by the SSTT specifically arranged for the high-temperature use. In-plane shear properties were contrarily estimated by the off-axial tensile method assuming that the mixed mode failure criterion is valid for composites. All tests were performed in vacuum. The preliminary test results indicate no degradation of both proportional limit stress (PLS) and the ultimate tensile strength at temperatures below 1000$$^{circ}$$C. Similarly, no significant degradation of high-temperature compressive and in-plane shear properties were identified, finally providing the stress envelope at elevated temperatures for the design.

Journal Articles

Compatibility of Ni and F82H with liquid Pb-Li under rotating flow

Kanai, Akihiko*; Park, C.*; Noborio, Kazuyuki*; Kasada, Ryuta*; Konishi, Satoshi*; Hirose, Takanori; Nozawa, Takashi; Tanigawa, Hiroyasu

Fusion Engineering and Design, 89(7-8), p.1653 - 1657, 2014/10

 Times Cited Count:5 Percentile:30.8(Nuclear Science & Technology)

Journal Articles

4th Platform Meeting on DEMO Design

Sakamoto, Yoshiteru; Uto, Hiroyasu; Nozawa, Takashi

Purazuma, Kaku Yugo Gakkai-Shi, 90(5), P. 314, 2014/05

The 4th platform meeting was held with 35 participants from universities, industries and JAEA. The objective of the meeting is to discuss the technologies required for DEMO design by young scientists at the Rokkasho BA site. The participants have deeply discussed about design issues on fusion safety, standards, maintenance and requirements for electrical connection along the meeting theme of "Road to fusion electricity". The meeting was very meaningful and should be continued in the future.

Journal Articles

Radiation-induced effects in physical properties of materials, 2-6; Evaluation of irradiation creep for F82H steel by using pressurized tubes

Ando, Masami; Nozawa, Takashi; Hirose, Takanori; Tanigawa, Hiroyasu

Purazuma, Kaku Yugo Gakkai-Shi, 90(1), p.64 - 67, 2014/01

Reduced activation ferritic/martensitic steel (RAFM) is a candidate for the material of DEMO blanket structure. The irradiation creep behavior of F82H and JLF-1 steel has been measured at 300, 400 and 500$$^{circ}$$C up to 5 dpa using helium-pressurized creep tubes irradiated in HFIR. These tubes were pressurized with helium to hoop stress levels of 0$$sim$$400 MPa at the irradiation temperature. The results for F82H and JLF-1 with a 400 MPa hoop stress detected small creep strains ($$<$$ 0.25%) after irradiation at 300$$^{circ}$$C. Irradiation creep rate (creep strain/dose) was tendency to be a similar behavior for high-dose irradiated RAFM specimens in FFTF. In this paper, a procedure of irradiation creep test & evaluation was also summarized.

Journal Articles

Re-defining failure envelopes for silicon carbide composites based on damage process analysis by acoustic emission

Nozawa, Takashi; Ozawa, Kazumi; Tanigawa, Hiroyasu

Fusion Engineering and Design, 88(9-10), p.2543 - 2546, 2013/10

 Times Cited Count:15 Percentile:74.2(Nuclear Science & Technology)

A SiC/SiC composite is a promising candidate for a fusion DEMO blanket. Due to the inherent quasi-ductile failure of composites, determining failure scenario for this class of composites is undoubtedly important to develop design codes in practical use of them. This study aims to evaluate the failure behavior of the quasi-ductile SiC/SiC composites to provide a strength map. For this purpose, detailed tensile, compressive and in-plane shear failure behaviors were evaluated by the acoustic emission (AE) technique. The AE results distinguished damage accumulation processes by wavelet analysis. Of particular emphasis is that matrix cracking occurred prior to the PLS by both tensile and compressive loadings because the rough-surface of SiC fibers resulted in the strong frictional stress at the fiber/matrix (F/M) interface. In this paper, an updated failure envelope will be provided by referring the actual matrix cracking stresses as more realistic and reasonable failure criteria.

Journal Articles

Development of small specimen test techniques for the IFMIF test cell

Wakai, Eiichi; Kim, B. J.; Nozawa, Takashi; Kikuchi, Takayuki; Hirano, Michiko*; Kimura, Akihiko*; Kasada, Ryuta*; Yokomine, Takehiko*; Yoshida, Takahide*; Nogami, Shuhei*; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 6 Pages, 2013/03

Journal Articles

Characterization of failure behavior of silicon carbide composites by acoustic emission

Nozawa, Takashi; Ozawa, Kazumi; Tanigawa, Hiroyasu

Ceramic Materials for Energy Applications II, p.95 - 110, 2012/11

This study aims to identify failure behavior of SiC/SiC composites by varied test modes. For this purpose, acoustic emission (AE) was applied to detect composites' failure. Tensile and compressive tests were conducted for a plain-weave (P/W) chemical vapor infiltration (CVI) composite. Various loading angles were applied to discuss an anisotropic issue. AE results distinguished damage accumulation processes in axial and off-axial loading cases. Specifically, test results indicated a clear difference of damage density between tensile and compressive tests. This study also classified the characteristic failure modes by separately discussing localized variations of power within a time series by wavelet analysis.

Journal Articles

Determination and prediction of axial/off-axial mechanical properties of SiC/SiC composites

Nozawa, Takashi; Ozawa, Kazumi; Choi, Y.-B.*; Koyama, Akira*; Tanigawa, Hiroyasu

Fusion Engineering and Design, 87(5-6), p.803 - 807, 2012/08

 Times Cited Count:29 Percentile:88.84(Nuclear Science & Technology)

A SiC/SiC composite is a candidate material for a demonstration fusion power reactor. Considering the inherent anisotropy of composites with variety of fabric architecture is required to precisely predict axial and off-axial mechanical properties by various failure modes. This study evaluated crack propagation behavior by the various modes to provide a strength anisotropy map and we discussed a methodology to analytically predict this trend. The strength anisotropy maps identified for various fabric orientations clearly indicate that the composites failed by the mixed modes. Specifically, due to the axial anisotropy, five individual modes such as tensile/compressive strengths in the axial/transverse directions, respectively, as well as the in-plane shear strength, are identified to be essential. In this study, with the analytical criterion based on the Tsai-Wu model, the strength anisotropy could satisfactorily be described.

Journal Articles

Determining the shear fracture properties of HIP joints of reduced-activation ferritic/martensitic steel by a torsion test

Nozawa, Takashi; Noh, S.; Tanigawa, Hiroyasu

Journal of Nuclear Materials, 427(1-3), p.282 - 289, 2012/08

 Times Cited Count:6 Percentile:43.32(Materials Science, Multidisciplinary)

A hot isostatic press (HIP) process is a key technology to fabricate a first wall with cooling channels of the fusion blanket system utilizing a reduced-activation ferritic/martensitic steel. This study aims to develop the torsion test method with a special emphasis to provide a reasonable and comprehensive method to determine interfacial shear properties of HIP joints during the torsional fracture process. Torsion test results identified that the torsion process shows yield of the base metal and following non-elastic deformation due to work hardening of the base metal. By considering this work hardening issue, we could propose a reasonable and realistic solution to determine the torsional yield shear stress and the ultimate torsional shear strength of the HIPped interface. Finally, representative torsion fracture process was identified.

Journal Articles

Japanese contribution to the DEMO-R&D program under the Broader Approach activities

Nishitani, Takeo; Yamanishi, Toshihiko; Tanigawa, Hiroyasu; Nozawa, Takashi; Nakamichi, Masaru; Hoshino, Tsuyoshi; Koyama, Akira*; Kimura, Akihiko*; Hinoki, Tatsuya*; Shikama, Tatsuo*

Fusion Engineering and Design, 86(12), p.2924 - 2927, 2011/12

 Times Cited Count:7 Percentile:48.75(Nuclear Science & Technology)

Several technical R&D activities related to the blanket materials are newly launched as a part of the Broader Approach (BA) activities, which was initiated by the EU and Japan. According to the common interests of these parties for DEMO, R&Ds on reduced activation ferritic/martensitic (RAFM) steels as structural material, SiCf/SiC composites as a flow channel insert material and/or alternative structural material, advanced tritium breeders and neutron multipliers, and tritium technology are carried out through the BA DEMO R&D program, in order to establish the technical bases on the blanket materials and the tritium technology required for DEMO design. This paper describes overall schedule of those R&D activities and recent progress in Japan carried out by JAEA as the domestic implementing agency on BA, collaborating with Japanese universities and other research institutes.

Journal Articles

Torsion test technique for interfacial shear evaluation of F82H RAFM HIP-joints

Nozawa, Takashi; Ogiwara, Hiroyuki*; Kannari, Jun*; Kishimoto, Hirotatsu*; Tanigawa, Hiroyasu

Fusion Engineering and Design, 86(9-11), p.2512 - 2516, 2011/10

 Times Cited Count:14 Percentile:71.79(Nuclear Science & Technology)

A hot isostatic press (HIP) process is a key technology to fabricate a first wall of the blanket system utilizing a reduced-activation ferritic/martensitic (RAFM) steel such as F82H. A primary objective of this study is to characterize interfacial properties of HIPed F82H joints by torsion to identify the feasibility of this test method. It is apparent that the absorption energies of the HIP joints varied by the processing conditions, although the maximum shear strength was not much different. According to the fracture surfaces, it is indicated that the reduction of the absorption energy was due to the oxide formed on the interface of the HIP joint and this was consistent with the results of charpy impact tests. In conclusion, the torsion test method enables to precisely evaluate the shear properties of the HIPed joint interface and becomes one of promising powerful techniques for inspection of the HIP joints.

Journal Articles

Tensile test technique for composites using small notched specimens

Nozawa, Takashi; Tanigawa, Hiroyasu

Journal of Nuclear Materials, 417(1-3), p.440 - 444, 2011/10

 Times Cited Count:5 Percentile:38.51(Materials Science, Multidisciplinary)

Development of small specimen test technique (SSTT) is one of key issues for irradiation study of nuclear-grade materials. This study aims to propose a new tensile test methodology using miniature notched specimens. For that purpose, crack extension behaviors of notched tensile specimens and their size effects were initially evaluated. Observing crack propagation behaviors of SiC/SiC composites, the apparent notch insensitivity was identified even if the moderate fiber/matrix interface was formed. Due to the notch insensitivity, it was found that key tensile properties can easily be predicted by test results of notched specimens. Noteworthy, this relation appeared independent of specimen size. Based on these findings, a conceptual design of miniature tensile test methodology using a notched specimen was proposed.

94 (Records 1-20 displayed on this page)