Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 124

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Investigation on behavior of a vortical liquid film of a wall-impinging liquid jet in a shallow pool

Horiguchi, Naoki; Yoshida, Hiroyuki; Kaneko, Akiko*; Abe, Yutaka*

Nihon Kikai Gakkai Kanto Shibu Dai-29-Ki Sokai, Koenkai Koen Rombunshu (Internet), 5 Pages, 2023/10

To elucidate the behavior of molten fuels as a liquid jet in a shallow pool, which is assumed in a core meltdown accident of an LWR, and develop the evaluation method, we investigated the behavior of the vortical liquid film of the simulated wall-impinging liquid jet using 3-dimensional interface shape data obtained by the experiment in a liquid-liquid system.

Journal Articles

A Simple correlation to estimate agglomerated debris formation based on experiments of melt jet-breakup using a metallic melt

Iwasawa, Yuzuru; Sugiyama, Tomoyuki; Kaneko, Akiko*

Nuclear Engineering and Design, 409, p.112348_1 - 112348_15, 2023/08

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Atomization mechanisms of a wall-impinging jet in a shallow pool

Horiguchi, Naoki; Yoshida, Hiroyuki; Kaneko, Akiko*; Abe, Yutaka*

Physics of Fluids, 35(7), p.073309_1 - 073309_17, 2023/07

 Times Cited Count:0 Percentile:0.01(Mechanics)

The atomization of a liquid jet in an immiscible liquid-liquid system is significant for the safety in the nuclear industry field. The Japan Atomic Energy Agency has developed an evaluation method of a melt fuel behavior as a liquid jet in an immiscible liquid-liquid system for subsequence using mechanistic numerical simulation and has investigated liquid jet behavior in a shallow pool through numerical simulations and experiments. The paper clarifies the atomization mechanism in the wall-impinging liquid jet. Herein, the atomization behavior in the wall-impinging liquid jet in a shallow pool in an immiscible liquid-liquid system was studied in terms of droplet formation and flow field using numerical simulation and the dispersed-phase tracking method. The results show that the droplet formation in the liquid film flow of the wall-impinging liquid jet had the three patterns, and we obtained the droplet properties immediately after droplet formation and developed the theoretical criterion regions using the dimensionless numbers for droplet formation. We characterized the patterns by comparing them with the regions and elucidated the droplet formation mechanisms depending on their sources. Moreover, we elucidated that the relationship between droplet formation as the local behaviors of the jet and atomization as the whole behavior.

Journal Articles

Measurement of fragments of a wall-impinging liquid jet in a shallow pool

Horiguchi, Naoki; Yoshida, Hiroyuki; Kaneko, Akiko*; Abe, Yutaka*

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 6 Pages, 2022/10

For safety evaluation of nuclear reactors in severe accidents, it is important to estimate physical quantities of fragments generated from the molten fuel jet, which falls in a pool and breaks up. The evaluation method has been developed for the behavior as liquid jet with hydrodynamic interaction including fuel coolant interaction (FCI). In case of a shallow pool assumed in ex-vessel, the molten fuel jet is assumed to behave as wall-impinging liquid jet and to form liquid film flow spreading on the floor with/without fragmentation. In our research, focusing on hydrodynamic interaction and the transient 3-dimensional spreading on the floor, we have developed the evaluation method by numerical simulation using the two-phase flow simulation code with interface tracking method (TPFIT) developed by JAEA and, the experimental method using the 3D-LIF method in liquid-liquid system for the validation data. In our previous studies, we investigated the wall-impinging liquid jet behavior with fragmentation and observed that the liquid film flow had some characteristic parts transiently. Since it indicates that the quantities change depending on the parts and affect the safety evaluation, it is important to measure the quantities of the fragments generated from each part. This paper explains the measurement of the physical quantities of the fragments generated from each part of the wall-impinging liquid jet in a shallow pool for the validation of the numerical simulation. We conducted an experiment with the 3D-LIF method and segmented the experimental data based on the fragmentation point over the liquid film flow using the dispersed phase tracking method, developed by JAEA. Then, we measured the diameter and amount of the fragments from the segmented experimental data and investigated their changing trend.

Journal Articles

Experimental study of liquid spreading and atomization due to jet impingement in liquid-liquid systems

Yamamura, Sota*; Fujiwara, Kota*; Honda, Kota*; Yoshida, Hiroyuki; Horiguchi, Naoki; Kaneko, Akiko*; Abe, Yutaka*

Physics of Fluids, 34(8), p.082110_1 - 082110_13, 2022/08

 Times Cited Count:2 Percentile:41.08(Mechanics)

Liquid spreading and atomization due to jet impingement in liquid-liquid systems are considered to be crucial for understanding the cooling behavior of high-temperature molten material in a shallow water pool. This phenomenon takes place when a liquid jet enters a pool filled with other immiscible liquid. The jet spreads radially after impinging on the floor while forming a thin liquid film and atomizing droplets. In this paper, we explain the result to quantify the unsteady three-dimensional behavior of the spreading jet by the employment of 3D-LIF measurements and 3-dimensional reconstruction. Under high flow velocity conditions, the phenomena of hydraulic jump and atomization of the liquid film occurred along with the spreading. To evaluate the spreading behavior, a comparison of the jump radius position of the liquid-liquid system as the representative value was made with the one calculated by the existing theory of a gas-liquid system. As the result, the spreading of the liquid film in the liquid-liquid system was suppressed compared with that in the gas-liquid system. Furthermore, the PTV method was successfully used to measure the velocity boundary layer and velocity profile in the liquid film, which are important factors that affect the spreading mechanism of the liquid film. These results revealed that in liquid-liquid systems, shear stress at the liquid-liquid interface causes a decrease in the flow velocity and suppressed the development of the velocity boundary layer. Also, to evaluate the atomization behavior, the number and diameter distribution of the droplets were measured from the acquired 3-dimensional shape data of the jet. As the result, the number of droplets increased with the flow velocity. Based on these results, we concluded that the spreading of the liquid film is affected by such atomization behavior.

Journal Articles

Time-resolved 3D visualization of liquid jet breakup and impingement behavior in a shallow liquid pool

Kimura, Fumihito*; Yamamura, Sota*; Fujiwara, Kota*; Yoshida, Hiroyuki; Saito, Shimpei*; Kaneko, Akiko*; Abe, Yutaka*

Nuclear Engineering and Design, 389, p.111660_1 - 111660_11, 2022/04

 Times Cited Count:3 Percentile:68.71(Nuclear Science & Technology)

Journal Articles

Development of dispersed phase tracking method for time-series 3-dimensional interface shape data

Horiguchi, Naoki; Yoshida, Hiroyuki; Yamamura, Sota*; Fujiwara, Kota*; Kaneko, Akiko*; Abe, Yutaka*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 14 Pages, 2022/03

Journal Articles

Droplet entrainment by high-speed gas jet into a liquid pool

Sugimoto, Taro*; Kaneko, Akiko*; Abe, Yutaka*; Uchibori, Akihiro; Kurihara, Akikazu; Takata, Takashi; Ohshima, Hiroyuki

Nuclear Engineering and Design, 380, p.111306_1 - 111306_11, 2021/08

 Times Cited Count:3 Percentile:45.99(Nuclear Science & Technology)

Liquid droplet entrainment by a high-speed gas jet is a key phenomenon for evaluation of sodium-water reaction. In this study, a visualization experiment for liquid droplet entrainment by an air jet in a water pool by using frame-straddling method was carried for development of an entrainment model in a sodium-water reaction analysis code. This experiment successfully provided clear images that captured generation and movement of droplets. Droplet diameter and moving speed were obtained at different locations and gas jet velocities from image processing. The measured data contributes phenomena elucidation and model development.

Journal Articles

Droplet-entrainment phenomena affected by interfacial behavior of a high-speed gas jet into a liquid pool

Saito, Masafumi*; Kaneko, Akiko*; Abe, Yutaka*; Uchibori, Akihiro; Kurihara, Akikazu; Takata, Takashi*; Ohshima, Hiroyuki

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 7 Pages, 2021/08

In order to provide the data for validation and improvement of the sodium-water reaction analysis code, a visualization experiment on liquid droplet entrainment in a high-pressure air jet submerged in a water pool was conducted. Diameter and velocity of entrained liquid droplets were successfully measured. The effect of a nozzle shape was elucidated.

Journal Articles

Lattice Boltzmann modeling and simulation of forced-convection boiling on a cylinder

Saito, Shimpei*; De Rosis, A.*; Fei, L.*; Luo, K. H.*; Ebihara, Kenichi; Kaneko, Akiko*; Abe, Yutaka*

Physics of Fluids, 33(2), p.023307_1 - 023307_21, 2021/02

 Times Cited Count:31 Percentile:98.32(Mechanics)

A Boiling phenomenon in a liquid flow field is known as forced-convection boiling. We numerically investigated the boiling system on a cylinder in a flow at a saturated condition. To deal with such a phenomenon, we developed a numerical scheme based on the pseudopotential lattice Boltzmann method. The collision was performed in the space of central moments (CMs) to enhance stability for high Reynolds numbers. Furthermore, additional terms for thermodynamic consistency were derived in a CMs framework. The effectiveness of the model was tested against some boiling processes, including nucleation, growth, and departure of a vapor bubble for high Reynolds numbers. Our model can reproduce all the boiling regimes without the artificial initial vapor phase. We found that the Nukiyama curve appears even though the focused system is the forced-convection system. Also, our simulations support experimental observations of intermittent direct solid-liquid contact even in the film-boiling regime.

Journal Articles

Study on optimizing microwave heating denitration method and powder characteristics of uranium trioxide

Segawa, Tomoomi; Kawaguchi, Koichi; Kato, Yoshiyuki; Ishii, Katsunori; Suzuki, Masahiro; Fujita, Shunya*; Kobayashi, Shohei*; Abe, Yutaka*; Kaneko, Akiko*; Yuasa, Tomohisa*

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 9 Pages, 2019/05

A solution of plutonium nitrate and uranyl nitrate is converted into a mixed oxide by microwave heating denitration method. In the present study, for improving the efficiency of microwave heating and achieving high-temperature uniformity to produce homogeneous UO$$_{3}$$ powder, the microwave heating test of potassium chloride and uranyl nitrate solution, and numerical simulation analysis were conducted. The potassium chloride agar was adjusted to the dielectric loss, which is close to that of the uranyl nitrate solution and the optimum support table height was estimated to be 50 mm for denitration of the uranyl nitrate solution by microwave heating. The adiabator improved the efficiency of microwave heating denitration. Moreover, the powder yield was improved by using the adiabator owing to ease of scraping of the denitration product from the bottom of the denitration vessel.

Journal Articles

Formation of agglomerated debris in jet-breakup experiment using metallic melts

Iwasawa, Yuzuru; Sugiyama, Tomoyuki; Maruyama, Yu; Kaneko, Akiko*; Abe, Yutaka*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 6 Pages, 2019/05

Journal Articles

Mechanism of flashing phenomena by microwave heating and influence of high dielectric constant solution

Fujita, Shunya*; Abe, Yutaka*; Kaneko, Akiko*; Yuasa, Tomohisa*; Segawa, Tomoomi; Kato, Yoshiyuki; Kawaguchi, Koichi; Ishii, Katsunori

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11

Mixed uranium oxide and plutonium oxide powder is produced from uranyl nitrate and plutonium nitrate mixed solution by the microwave heating denitration method in the spent fuel reprocessing process. Since the microwave heating method is accompanied by a boiling phenomenon, it is necessary to fully grasp the operating conditions in order to avoid flashing and spilling in the mass production of denitrification technology for the future. In this research, it was clarified that the heat transfer coefficient became lower as the dielectric constant increased. The dominant factor of the blowing up phenomena is supposed to be generation of the innumerable bubble rather than bubble's growth.

Journal Articles

Mechanism of flashing phenomena induced by microwave heating

Fujita, Shunya*; Abe, Yutaka*; Kaneko, Akiko*; Yuasa, Tomohisa*; Segawa, Tomoomi; Yamada, Yoshikazu; Kato, Yoshiyuki; Ishii, Katsunori

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07

Mixed uranium oxide and plutonium oxide powder is produced from uranyl nitrate and plutonium nitrate mixed solution by the microwave heating denitration method in the spent fuel reprocessing process. Since the microwave heating method is accompanied by a boiling phenomenon, it is necessary to fully grasp the operating conditions in order to avoid flashing and spilling in the mass production of denitrification technology for the future. In this research, it was confirmed that a potassium chloride aqueous solution as a simulant of uranyl nitrate aqueous solution with high dielectric loss cause loss of microwave at the solution surface as the dielectric loss increased with the increase of KCl concentration by experimental and electromagnetic field analysis, and revealed that the change in the heating condition affects the generation of flushing.

Journal Articles

Visualization study on droplet-entrainment in a high-speed gas jet into a liquid pool

Sugimoto, Taro*; Saito, Shimpei*; Kaneko, Akiko*; Abe, Yutaka*; Uchibori, Akihiro; Ohshima, Hiroyuki

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 7 Pages, 2018/07

A computational fluid dynamics code for a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors has been developed. In order to provide the data for validation of this code, the visualization experiment on liquid droplet entrainment in the high-pressure air jet submerged in the water pool was carried out. The experiment successfully elucidated the behavior, such as atomization of the relatively large diameter liquid droplet generated from the gas-liquid interface.

Journal Articles

Flushing phenomena and flow structure by microwave heating

Fujita, Shunya*; Abe, Yutaka*; Kaneko, Akiko*; Chonan, Fuminori*; Yuasa, Tomohisa*; Yamaki, Tatsunori*; Segawa, Tomoomi; Yamada, Yoshikazu

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 8 Pages, 2017/07

From the observation results, in the process of flushing, the behaviors leading to flushing were classified divided into three types. First type is that first generation bubble from heating leads to flushing. Second type is that nucleate boiling continues during heating and stop, finally single bubble generates and leads to flushing. Third type is defined that gradual evaporation occurs without bubbles. It was revealed that the total quantities of heat released by flushing are approximately equal when assuming the flushing mechanism, it can be triggered that a large amount of micro bubbles are instantaneously generated and grew.

Journal Articles

Development of evaluation method for hydraulic behavior in venturi scrubber for filtered venting

Horiguchi, Naoki; Yoshida, Hiroyuki; Nakao, Yasuhiro*; Kaneko, Akiko*; Abe, Yutaka*

Proceedings of 10th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-10) (USB Flash Drive), 7 Pages, 2016/11

Journal Articles

Numerical study on influence of Ohnesorge number and Reynolds number on the jet breakup behavior using the lattice Boltzmann method

Iwasawa, Yuzuru*; Abe, Yutaka*; Kaneko, Akiko*; Kanagawa, Tetsuya*; Saito, Shimpei*; Matsuo, Eiji*; Ebihara, Kenichi; Sakaba, Hiroshi*; Koyama, Kazuya*; Nariai, Hideki*

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

For the safety design in which heat is properly removed from the molten fuel after the core disruptive accident in a sodium-cooled fast reactor, the estimation of the breakup behavior of molten fuel discharged into the coolant like a jet is desired. In order to investigate the influence of viscocity on the jet behavior, we simulated a jet discharged into a coolant using the three-dimensional lattice Boltzmann model for two-phase fluid, and examined the influence of Ohnesorge number and Reynolds number on the jet behavior. As a result, we made clear that it is necessary to consider viscosity of the coolant as well as that of the jet for the estimation of jet behavior.

Journal Articles

Development of numerical simulation for jet breakup behavior in complicated structure of BWR lower plenum, 6; Influence of the simulant molten fuel properties on jet breakup phenomenon in multi-channels

Suzuki, Takayuki; Yoshida, Hiroyuki; Abe, Yutaka*; Kaneko, Akiko*

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

In order to improve the safety of Boiling Water Reactor (BWR), it is required to know the behavior of the plant when an accident occurred. Especially, it is important to estimate the behavior of molten core jet in the lower part of the reactor pressure vessel at a severe accident. In the BWR lower plenum, the flow characteristics of molten core jet are affected by many complicated structures, such as control rod guide tubes, instrument guide tubes and core support plate. The objective of this study is to develop the simulation method for the flow characteristic of molten core jet including the effects of the complicated structures in the lower plenum based on interface tracking method code TPFIT (Two Phase Flow simulation code with Interface Tracking). To verify and validate the applicability of the developed method in detail, it is necessary to obtain the experimental data that can be compared with detailed numerical results by the TPFIT. Therefore, experimental works by use of multi-phase flow visualization technique were also carried out. In the experiments, time series of interface shapes are observed by high speed camera and velocity profiles in/out of the jet were measured by the PIV method. In this paper, we carried out a numerical simulation of the jet breakup phenomena in the multi-channels with various simulant molten materials to evaluate the influence of properties on the jet breakup phenomena. As a result, it was confirmed that density and surface tension affected on the falling down velocity of the simulant materials and the interface behavior of the molten jet. However, viscosities of the simulant materials have small effects on jet breakup phenomena, including the interface shape and size of fragments.

Journal Articles

Numerical simulation of self-priming phenomena in venturi scrubber by two-phase flow simulation code TPFIT

Horiguchi, Naoki; Yoshida, Hiroyuki; Kanagawa, Tetsuya*; Kaneko, Akiko*; Abe, Yutaka*

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 6 Pages, 2015/05

From the viewpoint of protecting containment and suppressing diffusion of the radioactive materials at severe accidents of nuclear power plant, it is important to install filtered venting devices to permit release of high pressure pollutant gas to the atmosphere by eliminating radioactive materials in the gas. A Multi Venturi Scrubber System (MVSS) is one of the devices for the filtered venting, and is used to realize filtered venting without any power supply. The MVSS is composed of a "Venturi Scrubbers" part and a "bubble column" part. In the Venturi Scrubbers part of the MVSS, there are hundreds of the Venturi scrubbers (VS). In an operation mode of the MVSS, the radioactive materials are eliminated through the gas-liquid interface from the pollutant gas to the liquid phase of a dispersed flow in the VS and a bubbly flow in the bubble column part. In the VS, the dispersed flow is formed from the liquid, which is suctioned through the hole for suction (called self-priming). In previous studies, an evaluation method to evaluate the liquid flow rate by the self-priming was developed. However, to develop evaluation methods of performance of the VSs, the two-phase flow behavior must be investigated, including droplet size and velocity difference of liquid and gas phases. Two-phase flow behavior in the VS is complicated, and it is difficult to estimate two-phase flow behavior of the VS by only experimental procedures. In this study, to investigate the hydraulic behavior of the VS, we tried to apply a detailed numerical simulation method of two-phase flow to the numerical simulation of the VS. In the simulation, TPFIT developed in JAEA was used as the detailed numerical simulation method. In this paper, we performed the numerical simulation air-water two-phase flow in the of the lab scale VS by the TPFIT, and numerical results were compared with experimental results.

124 (Records 1-20 displayed on this page)