Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Inspection and repair techniques in the reactor vessel of the experimental fast reactor Joyo; Observation technical development in a reactor vessel of the fast reactor, 3

Okuda, Eiji; Sasaki, Jun; Suzuki, Nobuhiro; Takamatsu, Misao; Nagai, Akinori

JAEA-Technology 2016-017, 20 Pages, 2016/07

JAEA-Technology-2016-017.pdf:5.75MB

In-Vessel Observation (IVO) techniques for Sodium Cooled Fast Reactors (SFRs) in service are important for confirming their safety and integrity. Since IVO equipment for an SFR has to be designed to tolerate the severe conditions (high temperature, high radiation dose and limited access route), fiberscopes used to be used in previous IVO for SFRs. However, in order to attain an IVO with higher quality and resolution, IVO using a radiation resistant camera was conducted in the fast experimental reactor Joyo and obtained some results. The demonstration results provided valuable insights for use in further improving and verifying IVO techniques in SFRs.

Journal Articles

Development of inspection and repair techniques for reactor vessel of experimental fast reactor "Joyo"; Replacement of upper core structure

Takamatsu, Misao; Kawahara, Hirotaka; Ito, Hiromichi; Ushiki, Hiroshi; Suzuki, Nobuhiro; Sasaki, Jun; Ota, Katsu; Okuda, Eiji; Kobayashi, Tetsuhiko; Nagai, Akinori; et al.

Nihon Genshiryoku Gakkai Wabun Rombunshi, 15(1), p.32 - 42, 2016/03

In the experimental fast reactor Joyo, it was confirmed that the top of the irradiation test sub-assembly of "MARICO-2" (material testing rig with temperature control) had been broken and bent onto the in-vessel storage rack as an obstacle and had damaged the upper core structure (UCS). This paper describes the results of the in-vessel repair techniques for UCS replacement, which are developed in Joyo. UCS replacement was successfully completed in 2014. In-vessel repair techniques for sodium cooled fast reactors (SFRs) are important in confirming its safety and integrity. In order to secure the reliability of these techniques, it was necessary to demonstrate the performance under the actual reactor environment with high temperature, high radiation dose and remained sodium. The experience and knowledge gained in UCS replacement provides valuable insights into further improvements for In-vessel repair techniques in SFRs.

JAEA Reports

Inspection and repair techniques in the reactor vessel of the experimental fast reactor Joyo; Development of cover gas recycling system with precise pressure control

Ushiki, Hiroshi*; Okuda, Eiji; Suzuki, Nobuhiro; Takamatsu, Misao; Nagai, Akinori

JAEA-Technology 2015-042, 37 Pages, 2016/02

JAEA-Technology-2015-042.pdf:16.51MB

The reactor vessel of a sodium-cooled fast reactor (SFR) is filled with sodium coolant and cover gas (argon gas). In case of a cover gas boundary open (ie., in-vessel repair), installation of a temporary cover gas boundary and controlling the cover gas pressure slightly positive are required to prevent the cover gas release and the contamination of impurities, and during upper core structure (UCS) replacement in the experimental SFR Joyo from March to December 2014, a vinyl bag was installed as a part of the temporary cover gas boundary. However, because it has inferior thermal resistance, supply a cooling gas too much was required to maintain proper temperature for two months. On the basis of this requirement, a cover gas recycling system with precise pressure control was developed and adopted for UCS replacement. The system has a good pressure controllability and recyclability. The successful results of this system contributed to the certain promotion of UCS replacement. In addition, the insights and the experience gathered in this development are expected to improve the in-vessel repair techniques in sodium-cooled fast reactors.

Journal Articles

Replacement of upper core structure in experimental fast reactor Joyo, 1; Existing damaged upper core structure jack-up test

Ito, Hiromichi; Suzuki, Nobuhiro; Kobayashi, Tetsuhiko; Kawahara, Hirotaka; Nagai, Akinori; Sakao, Ryuta*; Murata, Chotaro*; Tanaka, Junya*; Matsusaka, Yasunori*; Tatsuno, Takahiro*

Proceedings of 2015 International Congress on Advances in Nuclear Power Plants (ICAPP 2015) (CD-ROM), p.1058 - 1067, 2015/05

In the experimental fast reactor Joyo (Sodium-cooled Fast Reactor (SFR)), it was confirmed that the top of the irradiation test sub-assembly had bent onto the in-vessel storage rack as an obstacle and had damaged the upper core structure (UCS). There is a risk of deformation of the UCS and guide sleeve (GS) caused by interference between them unless inclination is controlled precisely. To mitigate the risk, special jack-up equipment for applying three-point suspension was developed. The existing damaged UCS (ed-UCS) jack-up test using the jack-up equipment was conducted on May 7, 2014. As a result of this test, it was confirmed that the ed-UCS could be successfully jacked-up to 1000 mm without consequent overload. The experience and knowledge gained in the ed-UCS jack-up test provides valuable insights and prospects not only for UCS replacement but also for further improving and verifying repair techniques in SFRs.

JAEA Reports

Inspection and repair techniques in the reactor vessel of the experimental fast reactor Joyo; Observation techniques development in a reactor vessel of the fast reactor, 2

Okuda, Eiji; Sasaki, Jun; Suzuki, Nobuhiro; Takamatsu, Misao; Nagai, Akinori

JAEA-Technology 2015-005, 36 Pages, 2015/03

JAEA-Technology-2015-005.pdf:44.42MB

In-Vessel Observations (IVO) techniques for Sodium cooled Fast Reactors (SFRs) are important in confirming its safety and integrity. In order to secure the reliability of IVO techniques, it was necessary to demonstrate the performance under the actual reactor environment with high temperature, high radiation dose and remained sodium. The IVO equipment for the Upper Core Structure (UCS) fitting area was specifically developed in the experimental fast reactor "Joyo". And the IVO was successfully completed as shown below. (1) Improvement of picture quality and resolution. The IVO of UCS fitting area with the gap of 5mm in minimum was achieved using the IVO equipment with video-scope under the actual reactor environment. The picture quality and resolution could be improved comparing with the radiation resistant fiberscope which was used in past IVO. (2) Prevention of video-scope hypofunction by high temperature / radiation dose. Since video-scope is inferior in thermal and radiation resistance, the IVO equipment was designed to be able to withdraw and insert video-scopes with cooling gas. This measure could achieve the observation in short radiation time with available temperature under the actual reactor environment. The IVO equipment for UCS fitting area provided useful information on UCS replacement. In addition, the experience provided valuable insights into further improvements for IVO techniques in SFRs.

Oral presentation

Inspection and repair techniques in reactor vessel of sodium cooled fast reactor, 9-2; Existing damaged UCS jack-up test

Suzuki, Nobuhiro; Ito, Hiromichi; Sasaki, Jun; Okawa, Toshikatsu; Kawahara, Hirotaka; Kobayashi, Tetsuhiko; Sakao, Ryuta*; Murata, Chotaro*; Tanaka, Junya*; Matsusaka, Yasunori*; et al.

no journal, , 

no abstracts in English

Oral presentation

Inspection and repair techniques in reactor vessel of sodium cooled fast reactor, 9-5; Development of cover gas recycling system with precise pressure control

Okuda, Eiji; Ushiki, Hiroshi; Suzuki, Nobuhiro; Sasaki, Jun; Takamatsu, Misao

no journal, , 

no abstracts in English

Oral presentation

Inspection and repair techniques in reactor vessel of sodium cooled fast reactor, 9-6; Development of in-vessel observation techniques for UCS replacement

Sasaki, Jun; Okuda, Eiji; Suzuki, Nobuhiro; Ota, Katsu; Owada, Ryohei; Takamatsu, Misao

no journal, , 

no abstracts in English

Oral presentation

Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor "JOYO", 3-2; Replacement of upper core structure

Ushiki, Hiroshi; Ito, Hiromichi; Okuda, Eiji; Suzuki, Nobuhiro; Sasaki, Jun; Ota, Katsu; Kawahara, Hirotaka; Takamatsu, Misao; Nagai, Akinori; Okawa, Toshikatsu

no journal, , 

In the experimental fast reactor Joyo, it was confirmed that the top of the irradiation test sub-assembly of MARICO-2 (material testing rig with temperature control) had bent onto the in-vessel storage rack as an obstacle and had damaged the upper core structure (UCS) in 2007. As a part of the restoration work, UCS replacement was begun at March 24, 2014 and was completed at December 17. In-vessel repair (including observation) for sodium-cooled fast reactors (SFRs) is distinct from that for light water reactors and necessitates independent development. Application of developed in-vessel repair techniques to operation and maintenance of SFRs enhanced their safety and integrity. There is little UCS replacement experience in the world and this experience and insights, which were accumulated in the replacement work of in-vessel large sturucture (UCS) used for more than 30 years, are expected to improve the in-vessel repair techniques in SFRs.

9 (Records 1-9 displayed on this page)
  • 1