Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 56

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

R&D activities of tritium technologies on Broader Approach in Phase 2-2

Isobe, Kanetsugu; Kawamura, Yoshinori; Iwai, Yasunori; Oyaizu, Makoto; Nakamura, Hirofumi; Suzuki, Takumi; Yamada, Masayuki; Edao, Yuki; Kurata, Rie; Hayashi, Takumi; et al.

Fusion Engineering and Design, 98-99, p.1792 - 1795, 2015/10

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Activities on Broader Approach (BA) were started in 2007 on the basis of the Agreement between the Government of Japan and the EURATOM. The period of BA activities consist of Phase1 and Phase2 dividing into Phase 2-1 (2010-2011), Phase 2-2 (2012-2013) and Phase 2-3 (2014-2016). Tritium technology was chosen as one of important R&D issues to develop DEMO plant. R&D activities of tritium technology on BA consist of four tasks. Task-1 is to prepare and maintain the tritium handling facility in Rokkasho BA site in Japan. Task 2, 3 and 4 are main R&D activities for tritium and these are focused on: Task-2) Development of tritium accountancy technology, Task-3) Development of basic tritium safety research, Task-4) Tritium durability test. R&D activities of tritium technology in Phase 2-2 were underway successfully and closed in 2013.

Journal Articles

Recent progress on tritium technology research and development for a fusion reactor in Japan Atomic Energy Agency

Hayashi, Takumi; Nakamura, Hirofumi; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; Yamada, Masayuki; Suzuki, Takumi; Kurata, Rie; Oyaizu, Makoto; Edao, Yuki; et al.

Fusion Science and Technology, 67(2), p.365 - 370, 2015/03

 Times Cited Count:1 Percentile:9.74(Nuclear Science & Technology)

Journal Articles

Overview of R&D activities on tritium processing and handling technology in JAEA

Yamanishi, Toshihiko; Nakamura, Hirofumi; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; Oyaizu, Makoto; Yamada, Masayuki; Suzuki, Takumi; Hayashi, Takumi

Fusion Engineering and Design, 87(5-6), p.890 - 895, 2012/08

 Times Cited Count:1 Percentile:10.14(Nuclear Science & Technology)

In JAEA, the tritium processing and handling technologies have been studied at TPL. The main basic R&D activities in this field are: the tritium processing technology for the blanket recovery system; the tritium behavior in a confinement; and detritiation and decontamination. The R&D for tritium processing and handling technologies to a demonstration reactor (DEMO) are also planned to be carried out in the Broader Approach (BA) program in Japan by JAEA with Japanese universities. The ceramic electrolysis cell has been studied as a tritium processing method for the blanket system. The permeation behavior of tritium through pure iron into the gas containing water vapor has been studied. As for the behavior of high concentration tritium water, it was observed that the formation of the oxidized layer was prevented by the presence of tritium in water. Tritium durability tests were also carried out for the electrolysis cell of the chemical exchange column.

Journal Articles

Past 25 years results for large amount of tritium handling technology in JAEA

Yamanishi, Toshihiko; Yamada, Masayuki; Suzuki, Takumi; Kawamura, Yoshinori; Nakamura, Hirofumi; Iwai, Yasunori; Kobayashi, Kazuhiro; Isobe, Kanetsugu; Inomiya, Hiroshi; Hayashi, Takumi

Fusion Science and Technology, 60(3), p.1083 - 1087, 2011/10

 Times Cited Count:2 Percentile:18.29(Nuclear Science & Technology)

Tritium Process Laboratory (TPL) in Japan Atomic Energy Agency has been established as the only test facilities to handle over 1 gram of in Japan. From March 1988, TPL has been operated with tritium, and no tritium release accident has been observed. The average tritium concentration in a stream from a stack of the TPL to environment was 71 Bq/m$$^{3}$$, and was 1/70 of the Japanese regulation value for HTO. The failure data have been analyzed for several main components of the safety systems such as pumps, valves, and monitors. The data on the tritium waste and accountancy has also been accumulated. As a study of the Grants-in-Aid for Scientific Research, these data are analysed and are reported.

Journal Articles

Improvement of ultimate pressure of oil-free reciprocating pump for tritium service

Hayashi, Takumi; Yamada, Masayuki; Suzuki, Takumi; Yamanishi, Toshihiko

Fusion Science and Technology, 60(3), p.1101 - 1104, 2011/10

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Recent activities on tritium technologies of BA DEMO-R&D program in JAEA

Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori; Nakamura, Hirofumi; Iwai, Yasunori; Kobayashi, Kazuhiro; Isobe, Kanetsugu; Suzuki, Takumi; Yamada, Masayuki

Fusion Engineering and Design, 85(7-9), p.1002 - 1006, 2010/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The R&D for tritium technologies to a demonstration reactor (DEMO) is planned to be carried out in the Broader Approach (BA) program in Japan by JAEA with Japanese universities: (1) tritium analysis technology; (2) basic tritium safety research; and (3) tritium durability test. A multi-purpose RI facility is under construction at Rokkasho in Aomori to carry out the above R&D subjects. A preliminary safety study has been carried out for the amount of tritium released to the environment and for the radiation dose of workers. The main subjects of the R&D of tritium analysis are the technologies for real-time analysis for hydrogen isotopes, gas, liquid and solid. The materials of interest include F82H, SiC, ZrCo, solid and liquid advanced breeder and multipliers. In the tritium durability tests, organic materials and metals are studied for the radiation and the corrosion damage. A series of preliminary studies for the above subjects has been started.

Journal Articles

Prototype manufacturing of small tritium target inside JAEA

Tanaka, Shigeru; Abe, Yuichi; Kawabe, Masaru; Kutsukake, Chuzo; Oginuma, Yoshikazu; Yamada, Masayuki; Suzuki, Takumi; Yamanishi, Toshihiko; Konno, Chikara

Journal of Plasma and Fusion Research SERIES, Vol.9, p.338 - 341, 2010/08

We have conducted a small tritium target production R&D for FNS inside JAEA. The tritium target is produced by adsorbing tritium in a thin titanium layer. Since titanium is very active to oxygen, glow discharge cleaning was carried out to remove an oxidation film of the titanium surface. Through many tests with deuterium, we found out that it was not an oxidation film but humidity to disturb tritium absorption. The following procedures were necessary; (1) to outgas the inside of an absorption chamber, (2) to keep environmental humidity under 3% in handling the titanium-deposited substrate, (3) to keep the titanium-deposited target substrate in the vacuum. The DT neutron generation performance of the tritium target produced with the above procedures was the same as that with discharge cleaning. The manufacture condition of the small target was established.

Journal Articles

Safe handling experience of a tritium storage bed

Hayashi, Takumi; Suzuki, Takumi; Yamada, Masayuki; Shu, Wataru; Yamanishi, Toshihiko

Fusion Engineering and Design, 83(10-12), p.1429 - 1432, 2008/12

 Times Cited Count:30 Percentile:86.27(Nuclear Science & Technology)

In ITER facility, about 3 kg of tritium will be stored in more than 30 ZrCo hydride beds, as a reference design. The safe design and operation of tritium storage beds will be one of the most important points to enhance total safety of the facility. In the Tritium Process Lab. in Japan Atomic Energy Agency, many tritium storage beds with ZrCo have been used with/without self-accountancy measure, and the safe handling experiences have been accumulated for almost 20 years. From these experiences, the key issues to be considered for the safety design are the effect of tritium decay, such as decay heat transfer and $$^{3}$$He behavior with the normal protection of over temperature, over pressure and leak for a metal-hydride bed. Concerning the safety operation, the key issues are the procedure of hydrogenation-dehydrogenation cycle under the requirements of the storage system and the emergency performances, such as a rapid hydrogen recovery and loss of normal cooling function.

Journal Articles

Recent results of R&D activities on tritium technologies for ITER and fusion reactors at TPL of JAEA

Yamanishi, Toshihiko; Hayashi, Takumi; Shu, Wataru; Kawamura, Yoshinori; Nakamura, Hirofumi; Iwai, Yasunori; Kobayashi, Kazuhiro; Isobe, Kanetsugu; Arita, Tadaaki; Hoshi, Shuichi; et al.

Fusion Engineering and Design, 83(10-12), p.1359 - 1363, 2008/12

 Times Cited Count:4 Percentile:29.49(Nuclear Science & Technology)

At TPL (Tritium Process Laboratory) of JAEA, ITER relevant tritium technologies have been studied. The design studies of Air Detritiation System have been carried out in JAEA as a contribution of Japan to ITER. For the tritium processing technologies, our efforts have been focused on the research of the tritium recovery system of ITER test blanket system. A ceramic proton conductor has been studied as an advanced blanket system. A series of fundamental studies on tritium safety technologies not only for ITER but also for fusion DEMO plants has also been carried out at TPL of JAEA. The main research activities in this field are the tritium behavior in a confinement and its barrier materials; monitoring; accountancy; detritiation and decontamination etc. In this paper, the results of above recent activities at TPL of JAEA are summarized from viewpoint of ITER relevant and future fusion DEMO reactors.

Journal Articles

Operational results of the safety systems of the tritium process laboratory of the Japan Atomic Energy Agency

Yamanishi, Toshihiko; Yamada, Masayuki; Suzuki, Takumi; Shu, Wataru; Kawamura, Yoshinori; Nakamura, Hirofumi; Iwai, Yasunori; Kobayashi, Kazuhiro; Isobe, Kanetsugu; Hoshi, Shuichi; et al.

Fusion Science and Technology, 54(1), p.315 - 318, 2008/07

 Times Cited Count:11 Percentile:59.16(Nuclear Science & Technology)

The construction of the building and safety systems of the TPL was completed until 1985. The operations of the safety systems with tritium have been started from March 1988. The amount of tritium held at the TPL was 13 PBq at March 2007. The average tritium concentration in a stream from a stack of the TPL to environment was 6.0$$times$$10$$^{-3}$$ Bq/cm$${^3}$$; and is 1/100 smaller than that of the regulation value for the concentration of HTO in the air in Japan. The safety operation results with tritium have thus been obtained. A set of failure data of several main components of the TPL was also obtained as the valuable data for fusion tritium facilities.

Journal Articles

Tritium safety study using caisson assembly (CATS) at TPL/JAEA

Hayashi, Takumi; Kobayashi, Kazuhiro; Iwai, Yasunori; Isobe, Kanetsugu; Nakamura, Hirofumi; Kawamura, Yoshinori; Shu, Wataru; Suzuki, Takumi; Yamada, Masayuki; Yamanishi, Toshihiko

Fusion Science and Technology, 54(1), p.319 - 322, 2008/07

 Times Cited Count:2 Percentile:16.99(Nuclear Science & Technology)

Journal Articles

Activities of Caisson Assembly for Tritium Safety study (CATS) at TPL/JAEA

Kobayashi, Kazuhiro; Hayashi, Takumi; Iwai, Yasunori; Isobe, Kanetsugu; Nakamura, Hirofumi; Kawamura, Yoshinori; Shu, Wataru; Suzuki, Takumi; Yamada, Masayuki; Yamanishi, Toshihiko

Proceedings of 2nd Japan-China Workshop on Blanket and Tritium Technology, p.74 - 78, 2008/05

In order to accumulate the tritium behavior in the future fusion reactor included ITER, intentional tritium release experiments have been carried out using Caisson Assembly for Tritium Safety study (CATS) at Tritium Process Laboratory (TPL) in Japan Atomic Energy Agency (JAEA). Main objectives of CATS are (1) to demonstrate the initial tritium behavior in the room and to develop 3D simulation code of tritium behavior in the room. (2) to demonstrate the performance of integrated system for tritium confinement after intentional tritium release accident, (3) to accumulate the data for the detritiation behavior and the interaction between various materials and tritium (tritiated water) in the confinement. The study using CATS has been continued for about 10 yeas in TPL/JAEA.

Journal Articles

Studies on the behavior of tritium in components and structure materials of tritium confinement and detritiation systems of ITER

Kobayashi, Kazuhiro; Isobe, Kanetsugu; Iwai, Yasunori; Hayashi, Takumi; Shu, Wataru; Nakamura, Hirofumi; Kawamura, Yoshinori; Yamada, Masayuki; Suzuki, Takumi; Miura, Hidenori*; et al.

Nuclear Fusion, 47(12), p.1645 - 1651, 2007/12

 Times Cited Count:4 Percentile:11.4(Physics, Fluids & Plasmas)

The confinement and removal of tritium are the key subjects for safety of ITER. The ITER buildings are confinement barriers of tritium. In a hot cell building, tritium is often released, as vapor and is in contact with the inner walls. Also those of an ITER tritium plant building will be exposed to tritium in an accident. However, the data are scarce, especially on the penetration of tritium into the concrete of the wall materials. The tritium released in the buildings is removed by the Atmosphere Detritiation Systems (ADS), where the tritium is oxidized by catalysts and is removed as water. Special gas of SF$$_{6}$$ is used in ITER, and is expected to be released in an accident such as fire. Although the SF$$_{6}$$ gas has the potential as a catalyst poison, the performance of ADS with the existence of SF$$_{6}$$ has not been confirmed yet. Tritiated water is produced in the regeneration process of ADS, and is subsequently processed by the ITER Water Detritiation System (WDS). One of the key components of WDS is an electrolysis cell. The electrolysis cell is made of organic compounds, and there is no data on the durability of the cell exposed to tritium. To overcome these issues in a global tritium confinement, a series of experimental studies have been carried out as an ITER R&D task: (1) tritium behavior in concrete; (2) effect of SF$$_{6}$$ on performance of ADS; and (3) tritium durability of electrolysis cell of ITER-WDS.

Journal Articles

Recent activities on tritium technologies for ITER and fusion reactors at JAEA

Hayashi, Takumi; Isobe, Kanetsugu; Kobayashi, Kazuhiro; Iwai, Yasunori; Kawamura, Yoshinori; Nakamura, Hirofumi; Shu, Wataru; Arita, Tadaaki; Hoshi, Shuichi; Suzuki, Takumi; et al.

Fusion Science and Technology, 52(3), p.651 - 658, 2007/10

 Times Cited Count:2 Percentile:18.73(Nuclear Science & Technology)

The design studies of Air Detirtiation System have been carried out in JAEA as a contribution of Japan to ITER. For the tritium processing technologies, our efforts have been focused on the R&D of the tritium recovery system of ITER test blanket, using mainly molecular sieve and/or electro-chemical pumping system. A series of fundamental studies on tritium safety technologies, such as tritium behavior in a confinement and its barrier materials, monitoring, accountancy, detritiation and decontamination etc., has been carried out as a major activity in JAEA for ITER and fusion demo reactors. In this paper, the above recent activities on tritium technologies at Tritium Process Lab. in JAEA are summarized for ITER and future fusion reactor.

Journal Articles

Isotope effect of hydrogen rapidly supplied from the metal storage bed

Hayashi, Takumi; Suzuki, Takumi; Shu, Wataru; Yamanishi, Toshihiko

Fusion Science and Technology, 52(3), p.706 - 710, 2007/10

 Times Cited Count:11 Percentile:61.1(Nuclear Science & Technology)

In the tritium Storage and Delivery System (SDS) of ITER, how to control the isotope balance of DT fuel is one of the key issues for the stable and optimum operation. Basically, the equilibrium pressure of hydrogen-metal system has large isotope effect such as PH$$_{2}$$ $$<$$ PD$$_{2}$$ $$<$$ PT$$_{2}$$, however, there is only a limited data of the isotope composition of hydrogen mixture, which is supplied rapidly from the storage bed by a vacuum pump under ITER/SDS conditions. Therefore, in order to investigate the isotope composition of supplied hydrogen gases, a series of rapid supply experiments was performed using a 1/10 ITER scale ZrCo bed with a scroll pump as functions of bed temperature (573 K $$sim$$ 623 K) and isotope composition of hydrogen mixture stored initially (H:D = 1:9 $$sim$$ 9:1). The isotope composition was measured by in-line mass spectrometer during continuous hydrogen supply. In this paper, the above results are summarized and the isotope effect is discussed. The effective way to control the isotope balance of DT fuel is also discussed with more moderate SDS design conditions.

Journal Articles

Studies on behavior of tritium in components and structure materials of tritium confinement and detritiation systems of ITER

Kobayashi, Kazuhiro; Isobe, Kanetsugu; Iwai, Yasunori; Hayashi, Takumi; Shu, Wataru; Nakamura, Hirofumi; Kawamura, Yoshinori; Yamada, Masayuki; Suzuki, Takumi; Miura, Hidenori*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

no abstracts in English

Journal Articles

Monitoring of tritium in diluted gases by detecting bremsstrahlung X-rays

Shu, Wataru; Matsuyama, Masao*; Suzuki, Takumi; Nishi, Masataka

Fusion Engineering and Design, 81(1-7), p.803 - 808, 2006/02

 Times Cited Count:12 Percentile:63.1(Nuclear Science & Technology)

In this work, the counting rate of bremsstrahlung X-rays was measured against the tritium partial pressure in two mixed gases diluted with helium or hydrogen. Subsequently, the counting rate was also measured against total pressure for T$$_{2}$$-He mixture at a constant tritium partial pressure of 93 Pa or 1.3 kPa. For both mixtures, the counting rate of bremsstrahlung X-rays decreased linearly with the decreasing tritium partial pressure when the total pressure is smaller than about 10 kPa. At higher pressures, the deviation from the linear relationship appeared due to absorption of beta-particles in the gas phase, and this can be decreased by some commercially available arrangements. On the other hand, the counting rate of bremsstrahlung X-rays depended only upon the tritium partial pressure when absorption of beta-particles in the gas phase is negligibly small. The results obtained show that this method of tritium monitoring is very promising for the fuel processing system of fusion reactors, especially for tritium recovery system of breeding blankets.

Journal Articles

Design study of fusion DEMO plant at JAERI

Tobita, Kenji; Nishio, Satoshi; Enoeda, Mikio; Sato, Masayasu; Isono, Takaaki; Sakurai, Shinji; Nakamura, Hirofumi; Sato, Satoshi; Suzuki, Satoshi; Ando, Masami; et al.

Fusion Engineering and Design, 81(8-14), p.1151 - 1158, 2006/02

 Times Cited Count:123 Percentile:99.01(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Radiochemical reactions between tritium molecule and carbon dioxide

Shu, Wataru; Ohira, Shigeru; Suzuki, Takumi; Nishi, Masataka

Fusion Science and Technology, 48(1), p.684 - 687, 2005/07

 Times Cited Count:3 Percentile:24.22(Nuclear Science & Technology)

As part of a series of studies on radiochemical reactions that may take place in the fuel processing systems of a future D-T fusion machine like the ITER, reactions of tritium molecule (T$$_{2}$$) and carbon dioxide (CO$$_{2}$$) were examined by laser Raman spectroscopy and quadrupole mass spectrometry (QMS). Both T$$_{2}$$ and CO$$_{2}$$ decreased rapidly in the first 30 minutes after mixing, and then the reactions between them became much slower. As the predominant products of the reactions, carbon monoxide (CO) and tritiated water (T$$_{2}$$O) were found in gaseous phase and condensed phase, respectively. However, there existed also some solid products that were thermally decomposed to CO, CO$$_{2}$$, T$$_{2}$$, T$$_{2}$$O, etc. during baking at 150$$^{circ}$$C and 250$$^{circ}$$C.

Journal Articles

Tritium accounting stability of a ZrCo bed with "In-bed" gas flowing calorimetry

Hayashi, Takumi; Suzuki, Takumi; Yamada, Masayuki; Nishi, Masataka

Fusion Science and Technology, 48(1), p.317 - 323, 2005/07

 Times Cited Count:10 Percentile:56.74(Nuclear Science & Technology)

no abstracts in English

56 (Records 1-20 displayed on this page)