Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 260

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Consideration of high intensity single bunch acceleration in J-PARC RCS

Tamura, Fumihiko; Okita, Hidefumi; Hotchi, Hideaki*; Saha, P. K.; Meigo, Shinichiro; Yoshii, Masahito*; Omori, Chihiro*; Yamamoto, Masanobu; Seiya, Kiyomi*; Sugiyama, Yasuyuki*; et al.

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.64 - 68, 2023/11

The J-PARC 3GeV synchrotron (RCS) provides high intensity proton beams to the Materials and Life Science Experimental Facility (MLF) and the Main Ring (MR). The harmonic number (h) of the RCS is 2 and the RCS normally accelerates two bunches. For some experiments at the MLF, a single bunch is preferred. In this case, one of the rf bucket is filled with protons and the other is empty. Therefore the beam intensity is halved. If the RCS can accelerate with h=1, the intensity per bunch can be doubled, enabling to provide single bunch beams to the MLF with the maximum intensity. This possibly increases the MR beam power by injecting high intensity single bunches eight times. In this presentation, we report mainly on the consideration of h=1 acceleration in the RCS by longitudinal simulations.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:3 Percentile:80.29(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

RF design of the prototype spoke cavity for the JAEA-ADS linac

Tamura, Jun; Kondo, Yasuhiro; Yee-Rendon, B.; Meigo, Shinichiro; Maekawa, Fujio; Hasegawa, Kazuo; Kako, Eiji*; Umemori, Kensei*; Sakai, Hiroshi*; Konomi, Taro*

JPS Conference Proceedings (Internet), 33, p.011049_1 - 011049_6, 2021/03

Journal Articles

Measurement of displacement cross section for proton in the kinetic energy range from 0.4 GeV to 3 GeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

JPS Conference Proceedings (Internet), 33, p.011050_1 - 011050_6, 2021/03

R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and aluminum and copper was used as samples. As a result of comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimated the experiment by about 3 times.

Journal Articles

Present status of the R&D of the superconducting linac for the JAEA-ADS

Yee-Rendon, B.; Tamura, Jun; Kondo, Yasuhiro; Hasegawa, Kazuo; Maekawa, Fujio; Meigo, Shinichiro; Oguri, Hidetomo

JPS Conference Proceedings (Internet), 33, p.011043_1 - 011043_5, 2021/03

The Japan Atomic Energy Agency (JAEA) has been working in the research and development of an Accelerator Driven Subcritical System (ADS) for the transmutation of nuclear waste. The ADS proposed by JAEA consists of a CW proton linac of 30 MW coupling with a subcritical core reactor. The accelerator will be operated with a beam current of 20 mA. Normal conducting Radio-Frequency Cavities (NRFC) and Superconducting Radio-Frequency Cavities (SRFC) will be used to achieve final energy of 1.5 GeV, and the SRFC will be employed for the main part of the acceleration: from 2 MeV to 1.5 GeV. In the first stage of the accelerator development, the focus was the design and optimization of the SRFC models and the beam optics. For the SRFC sections, the acceleration will be done by using Half Wave Resonators (HWR), Single Spokes (SS), and Elliptical cavities (Ellip) operating with a frequency of 162, 324, and 648 MHz, respectively. The beam optics were optimized satisfying the equipartitioning condition to control the emittance growth, which helped to reduce the beam halos and the beam loss.

Journal Articles

Measurement of displacement cross-sections of copper and iron for proton with kinetic energies in the range 0.4 - 3 GeV

Matsuda, Hiroki; Meigo, Shinichiro; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

Journal of Nuclear Science and Technology, 57(10), p.1141 - 1151, 2020/10

 Times Cited Count:7 Percentile:76.65(Nuclear Science & Technology)

To estimate the structural damages of materials in accelerator facilities, displacement per atom (dpa) is widely employed as a damage index, calculated based on the displacement cross-section obtained using a calculation model. Although dpa is applied as standard, the experimental data of the displacement cross-section for a proton in the energy region above 20 MeV are scarce. Among the calculation models, difference of about factor 8 exist, so that the experimental data of the cross-section are crucial to validate the model. To obtain the displacement cross-section, we conducted experiments at J-PARC. The displacement cross-section of copper and iron was successfully obtained for a proton projectile with the kinetic energies, 0.4 - 3 GeV. The results were compared with those obtained using the widely utilized Norgertt-Robinson-Torrens (NRT) model and the athermal-recombination-corrected (arc) model based on molecular dynamics. It was found that the NRT model overestimates the present displacement cross-section by 3.5 times. The calculation results obtained using with the arc model based on the Nordlund parameter show remarkable agreement with the experimental data. It can be concluded that the arc model must be employed for the dpa calculation for the damage estimation of copper and iron.

Journal Articles

Measurement of displacement cross section of structural materials utilized in the proton accelerator facilities with the kinematic energy above 400 MeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

EPJ Web of Conferences, 239, p.06006_1 - 06006_4, 2020/09

 Times Cited Count:0 Percentile:0.1

R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and copper was used as samples. As a result of comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimated the experiment by about 3 times.

Journal Articles

Measurement of displacement cross section of structural materials utilized in the proton accelerator facilities with the kinematic energy above 400 MeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

JPS Conference Proceedings (Internet), 28, p.061004_1 - 061004_6, 2020/02

no abstracts in English

Journal Articles

Electromagnetic design of the prototype spoke cavity for the JAEA-ADS linac

Tamura, Jun; Kondo, Yasuhiro; Yee-Rendon, B.; Meigo, Shinichiro; Maekawa, Fujio; Hasegawa, Kazuo; Kako, Eiji*; Umemori, Kensei*; Sakai, Hiroshi*; Konomi, Taro*

Proceedings of 19th International Conference on RF Superconductivity (SRF 2019) (Internet), p.399 - 402, 2019/11

Journal Articles

Cavity and optics design of the accelerator for the JAEA-ADS project

Yee-Rendon, B.; Tamura, Jun; Kondo, Yasuhiro; Hasegawa, Kazuo; Maekawa, Fujio; Meigo, Shinichiro; Oguri, Hidetomo

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.107 - 111, 2019/07

Journal Articles

Measurement of displacement cross-section for structural materials in High-Power Proton Accelerator Facility

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Iwamoto, Hiroki; Hasegawa, Shoichi; Maekawa, Fujio; Yoshida, Makoto*; Ishida, Taku*; Makimura, Shunsuke*; Nakamoto, Tatsushi*

Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.499 - 501, 2018/06

no abstracts in English

Journal Articles

Beam-based compensation of extracted-beam displacement caused by field ringing of pulsed kicker magnets in the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

Harada, Hiroyuki; Saha, P. K.; Tamura, Fumihiko; Meigo, Shinichiro; Hotchi, Hideaki; Hayashi, Naoki; Kinsho, Michikazu; Hasegawa, Kazuo

Progress of Theoretical and Experimental Physics (Internet), 2017(9), p.093G01_1 - 093G01_16, 2017/09

AA2017-0286.pdf:4.64MB

 Times Cited Count:3 Percentile:29.24(Physics, Multidisciplinary)

The 3 GeV rapid cycling synchrotron (RCS) of the J-PARC is a high intensity proton accelerator of 1 MW. The accelerated proton beams in the RCS are extracted by eight pulsed kicker magnets and are delivered to a materials and life science experimental facility and main ring synchrotron. However, the fields of the magnets experience ringing that displaces the position of the extracted beam. This is a major issue from the viewpoint of target integrity and large beam loss. The ringing was directly measured as the displacement of the extracted beams by using a shorter pulsed beam and scanning the entire trigger timing of the kickers. We managed to cancel out the ringing by optimizing trigger timing and achieved the beam extraction with high accuracy. We developed automatic correction system of the timing and now have a higher stability. In this paper, we report our procedure and experimental results for ringing compensation.

Journal Articles

Ion-track grafting of vinylbenzyl chloride into poly(ethylene-$$co$$-tetrafluoroethylene) films using different media

Nuryanthi, N.*; Yamaki, Tetsuya; Kitamura, Akane; Koshikawa, Hiroshi; Yoshimura, Kimio; Sawada, Shinichi; Hasegawa, Shin; Asano, Masaharu; Maekawa, Yasunari; Suzuki, Akihiro*; et al.

Transactions of the Materials Research Society of Japan, 40(4), p.359 - 362, 2015/12

The ion-track grafting of a vinylbenzyl chloride (VBC) into a poly(ethylene-co-tetrafluoroethylene) (ETFE) film is necessary for preparing nanostructured hydroxide-ion-conductive electrolyte membranes. A key for success here is to obtain as high graft levels as possible (for higher conductivity) in a smaller number of tracks (for improving the other membrane properties). To this end, therefore, the effect of the medium for the VBC grafting was investigated as part of our continuing effort to optimize the experimental conditions. A 25 $$mu$$m-thick ETFE film was irradiated in a vacuum chamber with 560 MeV $$^{129}$$Xe at different fluences, and then the grafting was performed by immersing the irradiated films in a 20vol% VBC monomer at 60$$^{circ}$$C. A medium was a mixture of water (H$$_{2}$$O) and isopropyl alcohol (iPrOH) at different volume ratios. The degree of grafting increased as the H$$_{2}$$O content became higher, and reached a maximum in pure H$$_{2}$$O. These results can be explained by considering the well-known Trommsdorff effect, in which poor solubility of the grafted polymer in polar media leads to an increased polymerization rate probably due to a lower termination rate.

Journal Articles

Poly(ether ether ketone) (PEEK)-based graft-type polymer electrolyte membranes having high crystallinity for high conducting and mechanical properties under various humidified conditions

Hamada, Takashi; Hasegawa, Shin; Fukasawa, Hideyuki*; Sawada, Shinichi; Koshikawa, Hiroshi; Miyashita, Atsumi; Maekawa, Yasunari

Journal of Materials Chemistry A, 3(42), p.20983 - 20991, 2015/11

 Times Cited Count:32 Percentile:70.95(Chemistry, Physical)

no abstracts in English

Journal Articles

Beam monitors for the commissioning of energy upgraded linac

Miura, Akihiko; Maruta, Tomofumi*; Liu, Y.*; Miyao, Tomoaki*; Kawane, Yusuke; Ouchi, Nobuo; Oguri, Hidetomo; Ikegami, Masanori*; Hasegawa, Kazuo

JPS Conference Proceedings (Internet), 8, p.011002_1 - 011002_6, 2015/09

BB2014-1017.pdf:0.51MB

In the J-PARC Linac, an energy upgrade project has started since 2009 using Annular-ring Coupled Structure cavities to achieve design beam power of 1 MW at the exit of the downstream rapid cycling synchrotron. Linac beam parameters of the upgraded Linac is drastically improved especially for the beam energy from 181 to 400 MeV in the project. To meet with the significant upgrades of the Linac, beam monitors to be used for the upgraded beam line are newly designed and fabricated as well as the beam monitor layout is designed with the consideration to the beam commissioning strategies. This paper introduces the beam monitor layout in the new beam line and the commissioning results to confirm the beam monitor functioning.

Journal Articles

Bunch shape measurement of 181 MeV beam in J-PARC linac

Miura, Akihiko; Feschenko, A. V.*; Mirzojan, A. N.*; Miyao, Tomoaki*; Ouchi, Nobuo; Maruta, Tomofumi*; Liu, Y.*; Oguri, Hidetomo; Ikegami, Masanori*; Hasegawa, Kazuo

JPS Conference Proceedings (Internet), 8, p.011003_1 - 011003_6, 2015/09

BB2014-1018.pdf:0.45MB

In J-PARC Linac, an energy upgrade project has started since 2009 using Annular-ring Coupled Structure (ACS) cavities. We have decided to use the bunch shape monitors (BSM) as the monitors of the longitudinal beam width measurement in order to take the longitudinal matching using two bunchers located in the upstream of ACS cavities, where the RF frequency jumps from 324 to 972 MHz. Three BSMs were completely fabricated and installed in the beam line. The BSMs were commissioned with the beam and their operability was demonstrated. We found the vacuum degradation during the measurement. We once removed all BSMs to have a vacuum conditioning and postponed the longitudinal matching at the establishment of 400-MeV operation of the energy upgraded Linac. In this paper, we introduce the mechanism of the BSM, its operability, the measurement results with the 181 MeV beam and consistency check with the respect cavity amplitude. We also describe the operational vacuum conditions and the outline of the improvement of the vacuum system for the BSMs.

Journal Articles

On-site background measurements for the J-PARC E56 experiment; A Search for the sterile neutrino at J-PARC MLF

Ajimura, Shuhei*; Bezerra, T. J. C.*; Chauveau, E.*; Enomoto, T.*; Furuta, Hisataka*; Harada, Masahide; Hasegawa, Shoichi; Hiraiwa, T.*; Igarashi, Yoichi*; Iwai, Eito*; et al.

Progress of Theoretical and Experimental Physics (Internet), 2015(6), p.063C01_1 - 063C01_19, 2015/06

 Times Cited Count:6 Percentile:45.45(Physics, Multidisciplinary)

The J-PARC E56 experiment aims to search for sterile neutrinos at the J-PARC Materials and Life Science Experimental Facility (MLF). In order to examine the feasibility of the experiment, we measured the background rates of different detector candidate sites, which are located at the third floor of the MLF, using a detector consisting of plastic scintillators with a fiducial mass of 500 kg. The gammas and neutrons induced by the beam as well as the backgrounds from the cosmic rays were measured, and the results are described in this article.

Journal Articles

Design and delivery of beam monitors for the energy-upgraded linac in J-PARC

Miura, Akihiko; Ouchi, Nobuo; Oguri, Hidetomo; Hasegawa, Kazuo; Miyao, Tomoaki*; Ikegami, Masanori*

Journal of the Korean Physical Society, 66(3), p.364 - 372, 2015/02

 Times Cited Count:2 Percentile:20.53(Physics, Multidisciplinary)

In J-PARC Linac, an energy upgrade project has started to achieve the design beam power of 1 MW at the exit of downstream synchrotron. To meet with significant upgrades of the beam parameters, beam monitors used for the beam commissioning are modified and fabricated. We discuss how to design and assemble the beam monitors for the upgraded Linac. We delivered them for the new upgraded beam line periodically and newly fabricated monitors for the longitudinal matching are also delivered because of the frequency jump between original RF cavity and newly developed cavity. Finally we suppose the commissioning plans to support the monitor check.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2013

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Kawamoto, Koji; Yamada, Nobuto; Ishibashi, Masayuki; Murakami, Hiroaki; Matsuoka, Toshiyuki; Sasao, Eiji; Sanada, Hiroyuki; et al.

JAEA-Review 2014-038, 137 Pages, 2014/12

JAEA-Review-2014-038.pdf:162.61MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2013. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2013, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

Installation and performance check of beam monitors for energy upgraded J-PARC linac

Miura, Akihiko; Ouchi, Nobuo; Oguri, Hidetomo; Hasegawa, Kazuo; Maruta, Tomofumi*; Liu, Y.*; Miyao, Tomoaki*; Ikegami, Masanori*

Proceedings of 27th International Linear Accelerator Conference (LINAC 2014) (Internet), p.1059 - 1061, 2014/12

An energy upgrade project has started in the J-PARC Linac since 2009. In the upgraded project, beam energy in the Linac has increased from original 181 MeV to 400 MeV using the additional 21 Annular-ring Coupled Structure Linac (ACS) cavities. The new beam monitors as the beam current monitors, the phase monitors, the beam position monitors and the transverse profile monitors (wire scanner monitors) were designed and fabricated. By the end of November, 2013, all beam monitors were completely installed. From the middle of December, we started the beam commissioning to achieve the beam energy as 400 MeV, as well as to confirm the beam monitor functioning. We achieved the 400 MeV beam acceleration at the middle of January, 2014 using newly installed beam monitors. This paper describes the beam monitor installation and the beam commissioning results of beam monitor functioning.

260 (Records 1-20 displayed on this page)