Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 267

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation of the remaining spent extraction solvent in vermiculite after leaching tests via PIXE analysis

Arai, Yoichi; Watanabe, So; Hasegawa, Kenta; Okamura, Nobuo; Watanabe, Masayuki; Takeda, Keisuke*; Fukumoto, Hiroki*; Ago, Tomohiro*; Hagura, Naoto*; Tsukahara, Takehiko*

Nuclear Instruments and Methods in Physics Research B, 542, p.206 - 213, 2023/09

Journal Articles

Experiment and numerical simulation of pulsation flow in single channel for Li-7 enrichment technology development by MCCCE method

Horiguchi, Naoki; Yoshida, Hiroyuki; Kitatsuji, Yoshihiro; Hasegawa, Makoto*; Kishimoto, Tadafumi*

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

From the viewpoint of energy security in Japan and reduction of the environmental load, continuous operation of light water reactors is essential. Since a pH adjuster with enriched Li-7 ions is required for water quality control on PWR, the development of Li-7 enrichment technology is one of the key issues. The multi-channel counter-current electrophoresis (MCCCE) method has been developed as the technology with a low environmental load. To put this method into practical use, it is necessary to understand Li-7 ion behavior in the channel flow and optimize the experimental condition to separate Li-7 and its isotope. In this paper, to understand Li-7 ion behavior in a single channel of the experimental apparatus, a numerical simulation method based on a computational fluid dynamics (CFD) code with a particle tracking method, TPFIT-LPT, was developed. In the method, the motion of multiple ions under the electric field was simulated as a particle with an added velocity by the electric field. The difference in the isotopes was represented by changing of the magnitude of the added velocity. We also considered that although it is impossible to measure the behavior of each ion, it is important to measure the flow velocity of the bulk fluid for the validation of the numerical simulation. We developed a lab-scale experimental apparatus in which the single channel of the actual apparatus was simplified to measure the flow velocity by Particle Image Velocimetry (PIV). We set a pulsation flow condition on the lab-scale experiment, which is one of difficult conditions for the numerical simulation, and measured the velocity. As the result, we confirmed that the pulsation flow was reproduced. We set the measured data as the inlet boundary condition of the numerical simulation and conducted it. As the numerical result, we confirmed the ions affected by the electric field moved upstream with pulsation. We also confirmed the effect of the electric field on the motion of the isotope.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:3 Percentile:80.29(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Vacuum tube operation analysis under multi-harmonic driving and heavy beam loading effect in J-PARC RCS

Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Toda, Makoto*; Yoshii, Masahito*; Schnase, A.*

Nuclear Instruments and Methods in Physics Research A, 835, p.119 - 135, 2016/11

 Times Cited Count:5 Percentile:49.65(Instruments & Instrumentation)

A magnetic alloy loaded cavity is used to generate multi-harmonic rf voltage in J-PARC RCS. However, a vacuum tube operation analysis under the multi-harmonic driving is very complicated because many variables should be solved with a self consistency. At the conventional operation analysis, a hand work by tracing the constant current curve of the tube was performed, or an appropriate single harmonic wave form was assumed. We have developed a numerical analysis code which calculates the vacuum tube operation automatically and it realizes the multi-harmonic vacuum tube operation analysis. The code is verified at the high power beam acceleration test and we confirm the calculation results are consistent with the measurement ones. We can calculate the vacuum tube operation precisely by using the code, and it will contribute to improving the quality of the beam in the high intensity proton synchrotron.

Journal Articles

Disposal project for LLW and VLLW generated from research facilities in Japan; A Feasibility study for the near surface disposal of VLLW that includes uranium

Sakai, Akihiro; Hasegawa, Makoto; Sakamoto, Yoshiaki; Nakatani, Takayoshi

Proceedings of International Conference on the Safety of Radioactive Waste Management (Internet), p.98_1 - 98_4, 2016/11

The radioactivity of uranium-bearing waste contaminated by refined uranium increases with the production of its progeny on a long-term timescale. Therefore, the long-term safety concept of the near surface disposal of uranium-bearing waste is very important. The Japan Atomic Energy Agency (JAEA) examines disposal safety by controlling the average uranium radioactivity concentration in each section of disposal facility and performing safety assessment for very conservative assumptions.

Journal Articles

Simulation of beam behavior caused by odd harmonics of beam loading in J-PARC RCS

Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Toda, Makoto*; Yoshii, Masahito*

Proceedings of 7th International Particle Accelerator Conference (IPAC '16) (Internet), p.3443 - 3445, 2016/06

The J-PARC RCS accelerates 2 bunches at the harmonic number 2. The major Fourier component of the beam current is even harmonics. However, the odd harmonics grow under some conditions even though they are very small amplitude at the beginning. Particle tracking simulation suggests that the displacement and the deformation of the bunch are caused by the odd harmonics, it is synchronized with the potential distortion, and it results in the beam instability. We describe the particle tracking simulation results for the odd harmonic beam loading effect in the RCS.

Journal Articles

Mechanisms of increasing of the magnetic alloy core shunt impedance by applying a transverse magnetic field during annealing

Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Yamamoto, Masanobu; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Toda, Makoto*; Yoshii, Masahito*

Nuclear Instruments and Methods in Physics Research A, 797, p.196 - 200, 2015/10

 Times Cited Count:1 Percentile:9.79(Instruments & Instrumentation)

In the J-PARC synchrotrons, Magnetic Alloy (MA) cores loaded RF cavities are employed to achieve a high field gradient. We are successful to increase the shunt impedance of the MA cores for the Main Ring synchrotron RF cavities by applying a transverse magnetic field during annealing. The shunt impedances of the cores with transverse field annealing are around 50% higher than the cores without one. By applying the transverse magnetic field during annealing, the magnetization processes occur by mainly magnetization rotations, and consequently the core loss is reduced and the relative complex permeability shows an excellent frequency behavior. The MA core shunt impedance is increased by those improvements of the magnetic properties.

Journal Articles

Summary of discussion on AESJ special committee; Study of ensuring safety for near-surface disposal of uranium-bearing waste

Iguchi, Tetsuo*; Hasegawa, Makoto; Takahashi, Kuniaki; Enokido, Yuji*

Dekomisshoningu Giho, (52), p.12 - 19, 2015/09

no abstracts in English

Journal Articles

Simulation of phase modulation for longitudinal emittance blow-up in J-PARC MR

Yamamoto, Masanobu; Ezura, Eiji*; Hara, Keigo*; Hasegawa, Katsushi*; Nomura, Masahiro; Omori, Chihiro*; Schnase, A.*; Shimada, Taihei; Takagi, Akira*; Takata, Koji*; et al.

JPS Conference Proceedings (Internet), 8, p.012015_1 - 012015_6, 2015/09

The J-PARC MR provides a coasting proton beam for nuclear physics experiments by slow extraction. The longitudinal emittance should be enlarged until the MR flat top to mitigate the microwave instability. We have investigated a Phase Modulation (PM) method by using a High Frequency Cavity (HFC) to increase the emittance. We have performed extensive simulation studies to find the appropriate parameters of the PM through the particle tracking simulation. We found that the effective HFC frequency has linear dependence with the PM frequency, where the emittance is smoothly enlarged. Furthermore, we found that the required HFC voltage is inverse proportional to the square root of the duration time of the PM. These PM properties will be used for the design of the HFC. We describe the particle tracking simulation results of controlled emittance blow-up by the PM.

Journal Articles

High intensity single bunch operation with heavy periodic transient beam loading in wide band RF cavities

Tamura, Fumihiko; Hotchi, Hideaki; Schnase, A.*; Yoshii, Masahito*; Yamamoto, Masanobu; Omori, Chihiro*; Nomura, Masahiro; Toda, Makoto*; Shimada, Taihei; Hasegawa, Katsushi*; et al.

Physical Review Special Topics; Accelerators and Beams, 18(9), p.091004_1 - 091004_8, 2015/09

 Times Cited Count:4 Percentile:30.88(Physics, Nuclear)

The RCS in the J-PARC was originally designed to accelerate two high intensity bunches, while some of neutron experiments in the MLF and a muon experiment using MR beams require a single bunch operation mode. The beam intensity in the single bunch operation has been limited by longitudinal beam losses due to the rf bucket distortions by the wake voltage of the odd harmonics in the wide band MA cavities. We installed an additional rf feedforward system to compensate the wake voltages of the odd harmonics (h=1,3,5). The longitudinal beam losses during the single bunch acceleration disappeared with feedforward for the odd harmonics. We also confirmed that the beam quality in the single bunch acceleration are similar to that of the normal operation with two bunches. Thus, high intensity single bunch acceleration at the intensity of 2.3$$times$$10$$^{13}$$ protons per bunch has been achieved in the J-PARC RCS.

Journal Articles

Development of high power baluns using MA cores, 2

Tamura, Fumihiko; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Yamamoto, Masanobu; Nomura, Masahiro; Toda, Makoto*; Hasegawa, Katsushi*; Hara, Keigo*

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.639 - 642, 2015/09

In the J-PARC RCS, magnetic alloy (MA) loaded rf cavities are employed to achieve a high accelerating voltage and to realize the dual harmonic operation, where a single cavity is driven by the fundamental accelerating rf and the second harmonic. The cavity is driven by a class-AB push-pull tetrode amplifier. R&D for a high power balun to mitigate the unbalanced output voltages of two tubes is undergoing. The balun is a rf transformer, which consists of a MA core and high voltage cables. In application to the RCS rf system, the maximum rf voltage is very high in the order of 15kV and suppression of corona dischages is a key. We presentthe techniques to suppress corona discharges. Also, the R&D status of cooling of the MA core and cables.

Journal Articles

Study of shunt impedance of the FT3L magnetic alloy core

Nomura, Masahiro; Yamamoto, Masanobu; Shimada, Taihei; Tamura, Fumihiko; Omori, Chihiro*; Toda, Makoto*; Hasegawa, Katsushi*; Hara, Keigo*; Yoshii, Masahito*

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1096 - 1110, 2015/09

We are successful in increasing the shunt impedance of the MA cores by applying a transverse magnetic field during annealing. In this paper, we discuss the effects of transverse field annealing on the MA core shunt impedance by comparing two kinds of MA cores, those are the FT3M core that is annealed without any magnetic fields and the FT3L core that is annealed with a transverse magnetic field. We also discuss the shunt impedance of the MA core when the magnetization processes are governed by ideal magnetization rotations. To understand the ribbon thickness and the permeability dependences of the shunt impedance intuitively, we represent the shunt impedance as the resistance of the closed rectangular loop through which the eddy current flows.

Journal Articles

Beam loss caused by odd harmonics of beam loading in J-PARC RCS

Yamamoto, Masanobu; Hara, Keigo*; Hasegawa, Katsushi*; Nomura, Masahiro; Omori, Chihiro*; Shimada, Taihei; Tamura, Fumihiko; Toda, Makoto*; Yoshii, Masahito*

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1008 - 1012, 2015/09

A harmonic number of J-PARC RCS is two, and when all RF buckets are filled with bunches, the major parts of the beam Fourier components are the even harmonics. However, the particle tracking simulation suggests that the odd harmonics promote asymmetry on each bunch shape and they rapidly increase under some conditions. When the asymmetry becomes larger and larger monotonously, it causes severe beam loss. Furthermore, although the odd harmonics remain small amplitude, an amplitude modulation of them makes a beam halo and causes small beam loss. We describe the particle tracking simulation results to investigate the odd harmonics.

Journal Articles

Numerical analysis of organ doses delivered during computed tomography examinations using Japanese adult phantoms with the WAZA-ARI dosimetry system

Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji*; Ban, Nobuhiko*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Yoshitake, Takayasu*; Kai, Michiaki*

Health Physics, 109(2), p.104 - 112, 2015/08

 Times Cited Count:8 Percentile:56.45(Environmental Sciences)

A dosimetry system, named WAZA-ARI, is developed to assess accurately radiation doses to persons from Computed Tomography (CT) examination patients in Japan. Organ doses were prepared to application to dose calculations in WAZA-ARI by numerical analyses using average adult Japanese human models with the Particle and Heavy Ion Transport code System (PHITS). Experimental studies clarified the radiation configuration on the table for some multi-detector row CT (MDCT) devices. Then, a source model in PHITS could specifically take into account for emissions of X-ray in each MDCT device based on the experiment results. Numerical analyses with PHITS revealed a concordance of organ doses with human body size. The organ doses by the JM phantoms were compared with data obtained using previously developed systems. In addition, the dose calculation in WAZA-ARI were verified with previously reported results by realistic NUBAS phantoms and radiation dose measurement using a physical Japanese model. The results implied that analyses using the Japanese phantoms and PHITS including source models can appropriately give organ dose data with consideration of the MDCT device and physiques of typical Japanese adults.

JAEA Reports

Results of borehole investigation in -500m access/research gallery-north (13MI38$$sim$$13MI44 Boreholes)

Hasegawa, Takashi; Kawamoto, Koji; Yamada, Nobuto; Onuki, Kenji; Omori, Kazuaki; Takeuchi, Ryuji; Iwatsuki, Teruki; Sato, Toshinori

JAEA-Technology 2015-011, 135 Pages, 2015/07

JAEA-Technology-2015-011.pdf:28.63MB
JAEA-Technology-2015-011-appendix(CD-ROM).zip:566.32MB

The geological, hydraulic and geochemical data such as rock mass classification, groundwater inflow points and the volume, water pressure, and hydraulic conductivity were obtained from boreholes (13MI38$$sim$$13MI44) in the -500m Access/Research Gallery-North of Mizunami Underground Research laboratory (MIU). In addition to data acquisition, monitoring systems were installed to observe hydrochemical changes in the groundwater, and rock strain during and after the groundwater recovery experiment.

Journal Articles

A Beam position fiber counter with scintillation fibers and multi-pixel photon counter for high intensity beam operation

Honda, Ryotaro*; Miwa, Koji*; Matsumoto, Yuki*; Chiga, Nobuyuki*; Hasegawa, Shoichi; Imai, Kenichi

Nuclear Instruments and Methods in Physics Research A, 787, p.157 - 160, 2015/07

 Times Cited Count:7 Percentile:51.55(Instruments & Instrumentation)

A beam position fiber counter consisting of the scintillation fiber and a multi-pixel photon counter was developed in order to handle a 10 MHz secondary pion beam in the J-PARC E40 experiment. This counter was installed at the entrance of the beam line spectrometer at the K1.8 experimental area in J-PARC and used for the momentum reconstruction. In order to suppress the accidental background and reconstruct the beam momentum, a good timing resolution better than 0.8 ns and a good position resolution better than 200 $$mu$$m were simultaneously required for the counter. These requirements were well achieved by reading the 320 fibers with a diameter of 1 mm, which were arranged in a staggered position, with MPPC fiber by fiber. The signal induced from each MPPC was handled with an Extended Analogue SiPM Integrated ReadOut Chip (EASIROC) developed by Omega/IN2P3 in France. In addition, the timing of the discriminated signals from EASIROC was measured by a FPGA-based multi-hit TDC implemented into Spartan-6. Finally, we obtained the timing resolution of 0.68 ns and the position resolution of 190 $$mu$$m under the 9 MHz beam condition using a pion beam.

Journal Articles

WAZA-ARI; A Dose assessment system for patients in CT scan

Sato, Kaoru; Takahashi, Fumiaki; Endo, Akira; Ono, Koji*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Yoshitake, Takayasu*; Ban, Nobuhiko*; Kai, Michiaki*

RIST News, (58), p.25 - 32, 2015/01

The Japan Atomic Energy Agency (JAEA) are now developing WAZA-ARI for improvement of management of exposure doses due to CT examination under the joint research with the Oita University of Nursing and Health Sciences. The trial version of WAZA-ARI has been released on 21 December 2012. In trial version, users can perform dose assessment by using organ dose database based on the average adult Japanese male (JM-103) and female (JF-103) voxel phantoms and a 4 years old female voxel phantom (UFF4). The homepage of WAZA-ARI has been accessed over 1000 times per month and 28421 times by the end of September 2014. We are developing WAZA-ARI version 2 as the extension version of dose calculation functions of WAZA-ARI. WAZA-ARI version 2 will be released by the end of March 2015. In WAZA-ARI version 2. Users can upload dose calculation results to WAZA-ARI version 2 server, and utilize improvement of the dose management of patients and the optimization of CT scan conditions.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2013

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Kawamoto, Koji; Yamada, Nobuto; Ishibashi, Masayuki; Murakami, Hiroaki; Matsuoka, Toshiyuki; Sasao, Eiji; Sanada, Hiroyuki; et al.

JAEA-Review 2014-038, 137 Pages, 2014/12

JAEA-Review-2014-038.pdf:162.61MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2013. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2013, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

Excitation spectrum of Josephson vortices on surface superconductor

Kawakami, Takuto*; Nagai, Yuki; Yoshizawa, Shunsuke*; Kim, H.*; Hasegawa, Yukio*; Nakayama, Tomonobu*; Uchihashi, Takashi*; Hu, X.*

Journal of Physics; Conference Series, 568(2), p.022022_1 - 022022_5, 2014/12

 Times Cited Count:2 Percentile:67.45

no abstracts in English

Journal Articles

Imaging Josephson vortices on the surface superconductor Si(111)-($$sqrt{7} times sqrt{3}$$)-In using a scanning tunneling microscope

Yoshizawa, Shunsuke*; Kim, H.*; Kawakami, Takuto*; Nagai, Yuki; Nakayama, Tomonobu*; Hu, X.*; Hasegawa, Yukio*; Uchihashi, Takashi*

Physical Review Letters, 113(24), p.247004_1 - 247004_5, 2014/12

 Times Cited Count:64 Percentile:92.19(Physics, Multidisciplinary)

We have studied the superconducting Si(111)-($$sqrt{7}$$$$times$$$$sqrt{3}$$)-In surface using a $$^{3}$$He-based low-temperature scanning tunneling microscope. Zero-bias conductance images taken over a large surface area reveal that vortices are trapped at atomic steps after magnetic fields are applied. The crossover behavior from Pearl to Josephson vortices is clearly identified from their elongated shapes along the steps and significant recovery of superconductivity within the cores. Our numerical calculations combined with experiments clarify that these characteristic features are determined by the relative strength of the interterrace Josephson coupling at the atomic step.

267 (Records 1-20 displayed on this page)