Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 213

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Continuous data assimilation of large eddy simulation by lattice Boltzmann method and local ensemble transform Kalman filter (LBM-LETKF)

Hasegawa, Yuta; Onodera, Naoyuki; Asahi, Yuichi; Ina, Takuya; Imamura, Toshiyuki*; Idomura, Yasuhiro

Fluid Dynamics Research, 55(6), p.065501_1 - 065501_25, 2023/11

 Times Cited Count:0 Percentile:0.01(Mechanics)

We investigate the applicability of the data assimilation (DA) to large eddy simulations (LESs) based on the lattice Boltzmann method (LBM). We carry out the observing system simulation experiment of a two-dimensional (2D) forced isotropic turbulence, and examine the DA accuracy of the nudging and the local ensemble transform Kalman filter (LETKF) with spatially sparse and noisy observation data of flow fields. The advantage of the LETKF is that it does not require computing spatial interpolation and/or an inverse problem between the macroscopic variables (the density and the pressure) and the velocity distribution function of the LBM, while the nudging introduces additional models for them. The numerical experiments with $$256times256$$ grids and 10% observation noise in the velocity showed that the root mean square error of the velocity in the LETKF with $$8times 8$$ observation points ($$sim 0.1%$$ of the total grids) and 64 ensemble members becomes smaller than the observation noise, while the nudging requires an order of magnitude larger number of observation points to achieve the same accuracy. Another advantage of the LETKF is that it well keeps the amplitude of the energy spectrum, while only the phase error becomes larger with more sparse observation. From these results, it was shown that the LETKF enables robust and accurate DA for the 2D LBM with sparse and noisy observation data.

Journal Articles

R&D of digital technology on inverse estimation of radioactive source distributions and related source countermeasures; R&D status of digital platform including 3D-ADRES-indoor

Machida, Masahiko; Yamada, Susumu; Kim, M.; Okumura, Masahiko; Miyamura, Hiroko; Shikaze, Yoshiaki; Sato, Tomoki*; Numata, Yoshiaki*; Tobita, Yasuhiro*; Yamaguchi, Takashi; et al.

RIST News, (69), p.2 - 18, 2023/09

The contamination of radioactive materials leaked from the reactor has resulted in numerous hot spots in the Fukushima Daiichi Nuclear Power Station (1F) building, posing obstacles to its decommissioning. In order to solve this problem, JAEA has conducted research and development of the digital technique for inverse estimation of radiation source distribution and countermeasures against the estimated source in virtual space for two years from 2021 based on the subsidy program "Project of Decommissioning and Contaminated Water Management" performed by the funds from the Ministry of Economy, Trade and Industry. In this article, we introduce the results of the project and the plan of the renewal project started in April 2023. For the former project, we report the derivative method for LASSO method considering the complex structure inside the building and the character of the source and show the result of the inverse estimation using the method in the real reactor building. Moreover, we explain the platform software "3D-ADRES-Indoor" which integrates these achievements. Finally, we introduce the plan of the latter project.

Journal Articles

Kinetic mass transfer behavior of Eu(III) in nitrilotriacetamide-impregnated polymer-coated silica particles

Miyagawa, Akihisa*; Hayashi, Naoki*; Kuzure, Yoshiaki*; Takahashi, Takumi*; Iwamoto, Hibiki*; Arai, Tsuyoshi*; Nagatomo, Shigenori*; Miyazaki, Yasunori; Hasegawa, Kenta; Sano, Yuichi; et al.

Bulletin of the Chemical Society of Japan, 96(7), p.671 - 676, 2023/07

 Times Cited Count:2 Percentile:71.3(Chemistry, Multidisciplinary)

We investigated the distribution mechanism of Eu(III) in a single polymer-coated silica particle including nitrilotriacetamide (NTA) extractants known as HONTA and TOD2EHNTA. The present study provides a valuable approach for the evaluation and enhancement of the functionality of "single extractant-impregnated polymer-coated silica particle".

Journal Articles

Parameter optimization for urban wind simulation using ensemble Kalman filter

Onodera, Naoyuki; Idomura, Yasuhiro; Hasegawa, Yuta; Asahi, Yuichi; Inagaki, Atsushi*; Shimose, Kenichi*; Hirano, Kohin*

Keisan Kogaku Koenkai Rombunshu (CD-ROM), 28, 4 Pages, 2023/05

We have developed a multi-scale wind simulation code named CityLBM that can resolve entire cities to detailed streets. CityLBM enables a real time ensemble simulation for several km square area by applying the locally mesh-refined lattice Boltzmann method on GPU supercomputers. On the other hand, real-world wind simulations contain complex boundary conditions that cannot be modeled, so data assimilation techniques are needed to reflect observed data in the simulation. This study proposes an optimization method for ground surface temperature bias based on an ensemble Kalman filter to reproduce wind conditions within urban city blocks. As a verification of CityLBM, an Observing System Simulation Experiment (OSSE) is conducted for the central Tokyo area to estimate boundary conditions from observed near-surface temperature values.

Journal Articles

Experiment and numerical simulation of pulsation flow in single channel for Li-7 enrichment technology development by MCCCE method

Horiguchi, Naoki; Yoshida, Hiroyuki; Kitatsuji, Yoshihiro; Hasegawa, Makoto*; Kishimoto, Tadafumi*

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

From the viewpoint of energy security in Japan and reduction of the environmental load, continuous operation of light water reactors is essential. Since a pH adjuster with enriched Li-7 ions is required for water quality control on PWR, the development of Li-7 enrichment technology is one of the key issues. The multi-channel counter-current electrophoresis (MCCCE) method has been developed as the technology with a low environmental load. To put this method into practical use, it is necessary to understand Li-7 ion behavior in the channel flow and optimize the experimental condition to separate Li-7 and its isotope. In this paper, to understand Li-7 ion behavior in a single channel of the experimental apparatus, a numerical simulation method based on a computational fluid dynamics (CFD) code with a particle tracking method, TPFIT-LPT, was developed. In the method, the motion of multiple ions under the electric field was simulated as a particle with an added velocity by the electric field. The difference in the isotopes was represented by changing of the magnitude of the added velocity. We also considered that although it is impossible to measure the behavior of each ion, it is important to measure the flow velocity of the bulk fluid for the validation of the numerical simulation. We developed a lab-scale experimental apparatus in which the single channel of the actual apparatus was simplified to measure the flow velocity by Particle Image Velocimetry (PIV). We set a pulsation flow condition on the lab-scale experiment, which is one of difficult conditions for the numerical simulation, and measured the velocity. As the result, we confirmed that the pulsation flow was reproduced. We set the measured data as the inlet boundary condition of the numerical simulation and conducted it. As the numerical result, we confirmed the ions affected by the electric field moved upstream with pulsation. We also confirmed the effect of the electric field on the motion of the isotope.

Journal Articles

CityTransformer; A Transformer-based model for contaminant dispersion prediction in a realistic urban area

Asahi, Yuichi; Onodera, Naoyuki; Hasegawa, Yuta; Shimokawabe, Takashi*; Shiba, Hayato*; Idomura, Yasuhiro

Boundary-Layer Meteorology, 186(3), p.659 - 692, 2023/03

 Times Cited Count:0 Percentile:0.01(Meteorology & Atmospheric Sciences)

We develop a Transformer-based deep learning model to predict the plume concentrations in the urban area under uniform flow conditions. Our model has two distinct input layers: Transformer layers for sequential data and convolutional layers in convolutional neural networks (CNNs) for image-like data. Our model can predict the plume concentration from realistically available data such as the time series monitoring data at a few observation stations and the building shapes and the source location. It is shown that the model can give reasonably accurate prediction with orders of magnitude faster than CFD simulations. It is also shown that the exactly same model can be applied to predict the source location, which also gives reasonable prediction accuracy.

Journal Articles

Investigation of hydrogen superoxide adsorption during ORR on Pt/C catalyst in acidic solution for PEFC by ${it in-situ}$ high energy resolution XAFS

Yamamoto, Naoki*; Matsumura, Daiju; Hagihara, Yuto*; Tanaka, Kei*; Hasegawa, Yuta*; Ishii, Kenji*; Tanaka, Hirohisa*

Journal of Power Sources, 557, p.232508_1 - 232508_10, 2023/02

 Times Cited Count:2 Percentile:29.01(Chemistry, Physical)

Journal Articles

Data assimilation of three-dimensional turbulent flow using lattice Boltzmann method and local ensemble transform Kalman filter (LBM-LETKF)

Hasegawa, Yuta; Onodera, Naoyuki; Asahi, Yuichi; Idomura, Yasuhiro

Dai-36-Kai Suchi Ryutai Rikigaku Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2022/12

This study implemented and tested the ensemble data assimilation (DA) of turbulent flows using the lattice Boltzmann method and the local ensemble transform Kalman filter (LBM-LETKF). The computational code was implemented fully on GPUs. The test was carried out for the 3D turbulent flow around a square cylinder with $$2.3times10^{7}$$ meshes and 32 ensemble members using 32 GPUs. The time interval of the DA in the test was a half of the period of the Kalman vortex shedding. The normalized mean absolute errors (NMAE) of the lift coefficient were 132%, 148%, and 13.2% for the non-DA case, the nudging case (a simpler DA algorithm), and the LETKF case, respectively. It was found that the LETKF achieved good DA accuracy even though the observation was not frequent enough for the small scale turbulence, while the nudging showed systematic delays in its solution, and could not keep the DA accurately.

Journal Articles

Parameter optimization for turbulent boundary layer generation using ensemble Kalman filter

Onodera, Naoyuki; Idomura, Yasuhiro; Hasegawa, Yuta; Nakayama, Hiromasa

Dai-36-Kai Suchi Ryutai Rikigaku Shimpojiumu Koen Rombunshu (Internet), 3 Pages, 2022/12

We have developed a wind simulation code named CityLBM to realize wind digital twins. Mesoscale wind conditions are given as boundary conditions in CityLBM by using a nudging data assimilation method. It is found that conventional approaches with constant nudging coefficients fail to reproduce turbulent intensity in long time simulations, where atmospheric stability conditions change significantly. We propose a dynamic parameter optimization method for the nudging coefficient based on an ensemble Kalman filter. CityLBM was validated against plume dispersion experiments in the complex urban environment of Oklahoma City. The nudging coefficient was updated to reduce the error of the turbulent intensity between the simulation and the observation. The mean error of velocity variance is reduced by $$sim$$10% compared to the conventional nudging method with a constant nudging coefficient.

Journal Articles

Development of local-scale high-resolution atmospheric dispersion and dose assessment system

Nakayama, Hiromasa; Onodera, Naoyuki; Satoh, Daiki; Nagai, Haruyasu; Hasegawa, Yuta; Idomura, Yasuhiro

Journal of Nuclear Science and Technology, 59(10), p.1314 - 1329, 2022/10

 Times Cited Count:5 Percentile:84.97(Nuclear Science & Technology)

We developed a local-scale high-resolution atmospheric dispersion and dose assessment system (LHADDAS) for safety and consequence assessment of nuclear facilities and emergency response to nuclear accidents or deliberate releases of radioactive materials in built-up urban areas. This system is composed of pre-processing of input files, main calculation by local-scale high-resolution atmospheric dispersion model using large-eddy simulation (LOHDIM-LES) and real-time urban dispersion simulation model based on a lattice Boltzmann method (CityLBM), and post-processing of dose-calculation by simulation code powered by lattice dose-response functions (SIBYL). LHADDAS has a broad utility and offers superior performance in (1) simulating turbulent flows, plume dispersion, and dry deposition under realistic meteorological conditions, (2) performing real-time tracer dispersion simulations using a locally mesh-refined lattice Boltzmann method, and (3) estimating air dose rates of radionuclides from air concentrations and surface deposition in consideration of the influence of individual buildings and structures. This system is promising for safety assessment of nuclear facilities as an alternative to wind tunnel experiments, detailed pre/post-analyses of a local-scale radioactive plume dispersion in case of nuclear accidents, and quick response to emergency situations resulting from deliberate release of radioactive materials by a terrorist attack in an urban central district area.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:6 Percentile:84.97(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

JAEA Reports

Document collection of the Special Committee on HTTR Heat Application Test

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Review 2022-016, 193 Pages, 2022/08

JAEA-Review-2022-016.pdf:42.06MB

Aiming to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR), Japan Atomic Energy Agency (JAEA) is planning a HTTR heat application test producing hydrogen with High Temperature Engineering Test Reactor (HTTR) achieved 950$$^{circ}$$C of the highest reactor outlet coolant temperature in the world. In the HTTR heat application test, it is required to establish its safety design realizing highly safe connection of a HTGR and a hydrogen production plant by the Nuclear Regulation Authority to obtain the permission of changes to reactor installation. However, installation of a system connecting the hydrogen production plant and a nuclear reactor, and its safety design has not been conducted so far in conventional nuclear power plant including HTTR in the world. A special committee on the HTTR heat application test, established under the HTGR Research and Development Center, considered a safety design philosophy for the HTTR heat application test based on an authorized safety design of HTTR in terms of conformity to the New Regulatory Requirements taking into account new considerable events as a result of the plant modification and connection of the hydrogen production plant. This report provides materials of the special committee such as technical reports, comments provided from committee members, response from JAEA for the comments and minutes of the committee.

JAEA Reports

Safety design philosophy of HTTR Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Technology 2022-011, 60 Pages, 2022/07

JAEA-Technology-2022-011.pdf:2.08MB

Japan Atomic Energy Agency is planning a High Temperature Engineering Test Reactor (HTTR) heat application test producing hydrogen with the HTTR which achieved the highest reactor outlet coolant temperature of 950$$^{circ}$$C in the world to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR). In the HTTR heat application test, it is required to establish its safety design for coupling a hydrogen production plant to HTGR through the licensing by the Nuclear Regulation Authority (NRA). A draft of a safety design philosophy for the HTTR heat application test facility was considered taking into account postulated events due to the plant modification and coupling of the hydrogen production plant based on the HTTR safety design which was authorized through the safety review of the NRA against New Regulatory Requirements. The safety design philosophy was examined to apply proven conventional chemical plant standards to the hydrogen production plant for ensuring public safety against disasters caused by high pressure gases. This report presents a result of a consideration on safety design philosophies regarding the reasonability and condition to apply the High Pressure Gas Safety Act for the hydrogen production plant, safety classifications, seismic design classification, identification of important safety system.

Journal Articles

GPU implementation of local ensemble transform Kalman filter (LETKF) with two-dimensional lattice Boltzmann method

Hasegawa, Yuta; Onodera, Naoyuki; Asahi, Yuichi; Idomura, Yasuhiro

Keisan Kogaku Koenkai Rombunshu (CD-ROM), 27, 4 Pages, 2022/06

We developed GPU implementation of ensemble data assimilation (DA) using the local ensemble transform Kalman filter (LETKF) with the lattice Boltzmann method (LBM). The performance test was carried out upto 32 ensembles of two-dimensional isotropic turbulence simulations using the D2Q9 LBM. The computational cost of the LETKF was less than or nearly equal to that of the LBM upto eight ensembles, while the former exceeded the latter at larger ensembles. At 32 ensembles, their computational costs per cycle were respectively 28.3 msec and 5.39 msec. These results suggested that further speedup of the LETKF is needed for practical 3D LBM simulations.

Journal Articles

Parameter optimization for generating atmospheric boundary layers by using the locally mesh-refined lattice Boltzmann method

Onodera, Naoyuki; Idomura, Yasuhiro; Hasegawa, Yuta; Shimokawabe, Takashi*; Aoki, Takayuki*

Keisan Kogaku Koenkai Rombunshu (CD-ROM), 27, 4 Pages, 2022/06

We have developed a wind simulation code named CityLBM to realize wind digital twins. Mesoscale wind conditions are given as boundary conditions in CityLBM by using a nudging data assimilation method. It is found that conventional approaches with constant nudging coefficients fail to reproduce turbulent intensity in long time simulations, where atmospheric stability conditions change significantly. We propose a dynamic parameter optimization method for the nudging coefficient based on a particle filter. CityLBM was validated against plume dispersion experiments in the complex urban environment of Oklahoma City. The nudging coefficient was updated to reduce the error of the turbulent intensity between the simulation and the observation, and the atmospheric boundary layer was reproduced throughout the day.

Journal Articles

Performance measurement of an urban wind simulation code with the Locally Mesh-Refined Lattice Boltzmann Method over NVIDIA and AMD GPUs

Asahi, Yuichi; Onodera, Naoyuki; Hasegawa, Yuta; Shimokawabe, Takashi*; Shiba, Hayato*; Idomura, Yasuhiro

Keisan Kogaku Koenkai Rombunshu (CD-ROM), 27, 5 Pages, 2022/06

We have ported the GPU accelerated Lattice Boltzmann Method code "CityLBM" to AMD MI100 GPU. We present the performance of CityLBM achieved on NVIDIA P100, V100, A100 GPUs and AMDMI100 GPU. Using the host to host MPI communications, the performance on MI100 GPU is around 20% better than on V100 GPU. It has turned out that most of the kernels are successfully accelerated except for interpolation kernels for Adaptive Mesh Refinement (AMR) method.

Journal Articles

GPU optimization of lattice Boltzmann method with local ensemble transform Kalman filter

Hasegawa, Yuta; Imamura, Toshiyuki*; Ina, Takuya; Onodera, Naoyuki; Asahi, Yuichi; Idomura, Yasuhiro

Proceedings of 13th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Heterogeneous Systems (ScalAH22) (Internet), p.10 - 17, 2022/00

The ensemble data assimilation of computational fluid dynamics simulations based on the lattice Boltzmann method (LBM) and the local ensemble transform Kalman filter (LETKF) is implemented and optimized on a GPU supercomputer based on NVIDIA A100 GPUs. To connect the LBM and LETKF parts, data transpose communication is optimized by overlapping computation, file I/O, and communication based on data dependency in each LETKF kernel. In two dimensional forced isotropic turbulence simulations with the ensemble size of $$M=64$$ and the number of grid points of $$N_x=128^2$$, the optimized implementation achieved $$times3.85$$ speedup from the naive implementation, in which the LETKF part is not parallelized. The main computing kernel of the local problem is the eigenvalue decomposition (EVD) of $$Mtimes M$$ real symmetric dense matrices, which is computed by a newly developed batched EVD in EigenG. The batched EVD in EigenG outperforms that in cuSolver, and $$times64$$ speedup was achieved.

Journal Articles

Development of a surface heat flux model for urban wind simulation using locally mesh-refined lattice Boltzmann method

Onodera, Naoyuki; Idomura, Yasuhiro; Hasegawa, Yuta; Nakayama, Hiromasa

Dai-35-Kai Suchi Ryutai Rikigaku Shimpojiumu Koen Rombunshu (Internet), 3 Pages, 2021/12

A detailed wind simulation is very important for designing smart cities. Since a lot of tall buildings and complex structures make the air flow turbulent in urban cities, large-scale CFD simulations are needed. We develop a GPU-based CFD code based on a Lattice Boltzmann Method (LBM) with a block-based Adaptive Mesh Refinement (AMR) method. In order to reproduce real wind conditions, the wind condition and ground temperature of the mesoscale weather forecasting model are given as boundary conditions. In this research, a surface heat flux model based on the Monin-Obukhov similarity theory was introduced to improve the calculation accuracy. We conducted a detailed wind simulation in Oklahoma City. By executing this computation, wind conditions in the urban area were reproduced with good accuracy.

Journal Articles

Tree cutting approach for domain partitioning on forest-of-octrees-based block-structured static adaptive mesh refinement with lattice Boltzmann method

Hasegawa, Yuta; Aoki, Takayuki*; Kobayashi, Hiromichi*; Idomura, Yasuhiro; Onodera, Naoyuki

Parallel Computing, 108, p.102851_1 - 102851_12, 2021/12

 Times Cited Count:2 Percentile:32.94(Computer Science, Theory & Methods)

The aerodynamics simulation code based on the lattice Boltzmann method (LBM) using forest-of-octrees-based block-structured local mesh refinement (LMR) was implemented, and its performance was evaluated on GPU-based supercomputers. We found that the conventional Space-Filling-Curve-based (SFC) domain partitioning algorithm results in costly halo communication in our aerodynamics simulations. Our new tree cutting approach improved the locality and the topology of the partitioned sub-domains and reduced the communication cost to one-third or one-fourth of the original SFC approach. In the strong scaling test, the code achieved maximum $$times1.82$$ speedup at the performance of 2207 MLUPS (mega- lattice update per second) on 128 GPUs. In the weak scaling test, the code achieved 9620 MLUPS at 128 GPUs with 4.473 billion grid points, while the parallel efficiency was 93.4% from 8 to 128 GPUs.

Journal Articles

Coexistence of magnetoelectric and antiferroelectric-like orders in Mn$$_{3}$$Ta$$_{2}$$O$$_{8}$$

Kimura, Kenta*; Yagi, Naoki*; Hasegawa, Shunsuke*; Hagihara, Masato; Miyake, Atsushi*; Tokunaga, Masashi*; Cao, H.*; Masuda, Takatsugu*; Kimura, Tsuyoshi*

Inorganic Chemistry, 60(20), p.15078 - 15084, 2021/10

 Times Cited Count:1 Percentile:10.45(Chemistry, Inorganic & Nuclear)

213 (Records 1-20 displayed on this page)