Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 120

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Polarized neutrons observed nanometer-thick crystalline ice plates in frozen glucose solution

Kumada, Takayuki; Nakagawa, Hiroshi; Miura, Daisuke; Sekine, Yurina; Motokawa, Ryuhei; Hiroi, Kosuke; Inamura, Yasuhiro; Oku, Takayuki; Oishi, Kazuki*; Morikawa, Toshiaki*; et al.

Journal of Physical Chemistry Letters (Internet), 14(34), p.7638 - 7643, 2023/08

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

The structure of nano-ice crystals in rapidly frozen glucose solution was elucidated by using spin-contrast-variation small-angle neutron scattering, which distinguishes the nano-ice crystal signal from the frozen amorphous solution signal by the polarization-dependent neutron scattering. The analysis revealed that the nano-ice crystals form a planar structure with a diameter exceeding tens of nanometers and a thickness of 1 nm, which is close to the critical nucleation size. This result suggests that the glucose molecules are preferentially bound to a specific face of nano-ice crystals, and then block the crystal growth perpendicular to that face.

Journal Articles

Development of spin-contrast-variation neutron powder diffractometry for extracting the structure factor of hydrogen atoms

Miura, Daisuke*; Kumada, Takayuki; Sekine, Yurina; Oku, Takayuki; Takata, Shinichi; Hiroi, Kosuke; Iwata, Takahiro*

J-PARC 22-02; J-PARC MLF Annual Report 2021, p.6 - 7, 2022/03

We carried out spin contrast variation neutron powder diffractometry of glutamic acid crystal. The diffraction peak intensities varied as a function of proton polarization. We extracted the structure factor of hydrogen atoms from the variation of peak intensities.

JAEA Reports

Measurement and analysis of in-vessel component activation and gamma dose rate distribution in Joyo, 2

Yamamoto, Takahiro; Ito, Chikara; Maeda, Shigetaka; Ito, Hideaki; Sekine, Takashi

JAEA-Technology 2017-036, 41 Pages, 2018/02

JAEA-Technology-2017-036.pdf:7.86MB

In the experimental fast reactor Joyo, the damaged upper core structure (UCS) was retrieved into the cask in May 2014 The dose rate on UCS surface was quite high due to the activation for over 30 years operation. In order to attain the optimum safety design, manufacture and operation of equipment for UCS replacement, the method to evaluate UCS surface dose rate was developed on the basis of C/E obtained by the in-vessel dose rate measurement in Joyo. In order to verify the evaluation method, the axial gamma-ray distribution measurement on the surface of the cask, which contained UCS, was conducted using a plastic scintillating optical fiber (PSF) detector. This paper describes the comparison results between calculation and measurement as follows. (1) The measured axial gamma-ray distribution on the cask surface had a peak on proper location with considering the cask shielding structure and agree well with the calculated distribution. (2) The C/E of axial gamma-ray distribution on the cask surface was ranged from 1.1 to 1.7. It was confirmed that the calculation for UCS replacement equipment design had a margin conservatively. Then, the results showed that the developed evaluation method for UCS replacement equipment design was sufficiently reliable.

Journal Articles

In-vessel inspection probing technique using optical fibers under high radiation dose

Ito, Chikara; Naito, Hiroyuki; Oba, Hironori; Saeki, Morihisa; Ito, Keisuke; Ishikawa, Takashi; Nishimura, Akihiko; Wakaida, Ikuo; Sekine, Takashi

Proceedings of 22nd International Conference on Nuclear Engineering (ICONE-22) (DVD-ROM), 7 Pages, 2014/07

A high-radiation resistant optical fiber has been developed in order to investigate the interiors of the reactor pressure vessels and the primary containment vessels of the Fukushima Daiichi Nuclear Power Station. The radiation resistance of an optical fiber was improved by increasing the amount of hydroxyl up to 1000 ppm in pure silica fiber. The improved image fiber consists of common cladding and a large number of fiber cores made from pure silica that contains 1000 ppm hydroxyl. The transmissive rate of an infrared image was not affected after the irradiation of 1 MGy. We have developed the fiber-coupled LIBS system to detect plasma emission efficiently in near-infrared region. In addition, we have performed a $$gamma$$ ray dose rate measurement using an optical fiber of which scintillator is attached to the tip. As a result, the concept of applicability of a probing system using the high-radiation resistant optical fibers has been confirmed.

Journal Articles

Verification of JUPITER standard analysis method for upgrading Joyo MK-III core design and management

Maeda, Shigetaka; Ito, Chikara; Sekine, Takashi; Aoyama, Takafumi

Journal of Power and Energy Systems (Internet), 6(2), p.184 - 196, 2012/06

The verification of calculated core characteristics of the Joyo MK-III core using the JUPITER fast reactor standard analysis method was conducted by comparing with the measured values through the core physics tests. The purpose is to upgrade the core performance to increase the driver fuel burn-up and to increase the excess reactivity necessary for conducting various irradiation tests in the core region. Most of the C/Es are within 5% of unity. Through the comparisons, the calculation accuracy of the JUPITER standard analysis method for a small size sodium cooled fast reactor with a hard neutron spectrum was clarified. As a result of this study, more irradiation tests can be performed with appropriate safety margin and the efficient core and fuel management can be achieved to save the number of refueling.

JAEA Reports

Compatibility of zirconium alloys in high-temperature sodium

Furukawa, Tomohiro; Kato, Shoichi; Maeda, Shigetaka; Yamamoto, Masaya; Sekine, Takashi; Ito, Chikara

JAEA-Research 2011-039, 20 Pages, 2012/02

JAEA-Research-2011-039.pdf:3.4MB

Application of zirconium alloy as a neutron reflector around the driver fuel region of the Japanese experimental fast reactor JOYO has been planned for a further increase of core average burn-up. In order to investigate the compatibility of the zirconium alloys with high-temperature sodium which is coolant of the JOYO, corrosion test in sodium and tensile test of the exposed alloys were performed. The corrosion test was done at 500$$^{circ}$$C and 650$$^{circ}$$C in stagnant/flowing sodium for two kinds of zirconium alloys, and then weight change measurement and metallurgical observation were carried out. The tensile test was performed in air at the same temperature with the sodium exposure.

Journal Articles

Verification of JUPITER standard analysis method for upgrading Joyo MK-III core design and management

Maeda, Shigetaka; Ito, Chikara; Sekine, Takashi; Aoyama, Takafumi

Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19) (CD-ROM), 10 Pages, 2011/10

The verification of calculated core characteristics of the Joyo MK-III core using the JUPITER fast reactor standard analysis method was conducted by comparing with the measured values through the core physics tests. The purpose is to upgrade the core performance to increase the driver fuel burn-up and to increase the excess reactivity necessary for conducting various irradiation tests in the core region. Most of the C/Es are within 5% of unity. Through the comparisons, the calculation accuracy of the JUPITER standard analysis method for a small size sodium cooled fast reactor with a hard neutron spectrum like Joyo was clarified. As a result of this study, more irradiation tests can be performed with appropriate safety margin and the efficient core and fuel management can be achieved to save the number of refueling.

Journal Articles

Core modification to improve irradiation efficiency of the experimental fast reactor Joyo

Maeda, Shigetaka; Yamamoto, Masaya; Soga, Tomonori; Sekine, Takashi; Aoyama, Takafumi

Journal of Nuclear Science and Technology, 48(4), p.693 - 700, 2011/04

Core modification was investigated to further increase the core burn-up of the experimental fast reactor Joyo. This modification also enables the core to accommodate more irradiation test subassemblies that have lower fissile material content compared to the driver fuel. The design calculations showed that the replacement of the radial reflector elements made of stainless steel with those made of zirconium of nickel-base ally is effective in improving neutron efficiency. The irradiation tests capacity can be increased by reducing the number of control rods based on the re-evaluation of the design margin in the control rod worth calculation. These modifications will be useful to save driver fuels and to enhance the Joyo's irradiation capability.

Journal Articles

Development of observation techniques in reactor vessel of experimental fast reactor Joyo

Takamatsu, Misao; Imaizumi, Kazuyuki; Nagai, Akinori; Sekine, Takashi; Maeda, Yukimoto

Journal of Power and Energy Systems (Internet), 4(1), p.113 - 125, 2010/00

During the investigation of an incident that occurred with the experimental fast reactor Joyo, in-vessel observations using a standard Video Camera (VC) and a Radiation-Resistant Fiberscope (RRF) took place at (1) the top of the Sub-Assemblies (S/As) and the In-Vessel Storage rack (IVS), (2) the bottom face of the Upper Core Structure (UCS) under the condition with the level of sodium at -50 mm below the top of the S/As. A simple 6 m overhead view of each S/A, through the fuel handling or inspection holes etc, was photographed using a VC fixed to the rotating-plug with the acrylic panel for making observations of the top of S/As and IVS. About 650 photographs were required to create a composite photograph of the top of the entire S/As and IVS, and a resolution was estimated to be approximately 1 mm. In order to observe the bottom face of the UCS, a remote handling device equipped with RRFs (approximately 13 m long) was specifically developed for Joyo with a tip that could be bent into an L-shape and inserted into the 70 mm gap between the top of the S/As and the bottom of the UCS. A total of about 35,000 photographs were needed for the full investigation. Regarding the resolution, the sodium flow regulating grid of 0.8 mm in thickness could be discriminated, and the base of thermocouple sleeves 6 mm in diameter located 450 mm above the top of S/As were also clearly observed. In both types of observations, it was confirmed that lighting adjustments play a critical role. Particularly in narrow space observations, scattered lighting with automatic dimming controlled light source was available for achieving close observations of the in-vessel structures. In addition to the successful result of the incident investigation, these experiments provided valuable insights for use in further improving and verifying in-vessel observation techniques in sodium cooled fast reactors.

Journal Articles

Development of observation techniques in reactor vessel of experimental fast reactor Joyo

Takamatsu, Misao; Imaizumi, Kazuyuki; Nagai, Akinori; Sekine, Takashi; Maeda, Yukimoto

Proceedings of 17th International Conference on Nuclear Engineering (ICONE-17) (CD-ROM), 10 Pages, 2009/07

During the investigation of an incident in Joyo, in-vessel observations using a Video Camera (VC) and a Radiation-Resistant Fiberscope (RRF) took place at (1) the top of the Sub-Assemblies (S/As) and the In-Vessel Storage rack (IVS), (2) the bottom face of the Upper Core Structure (UCS). A simple 6 m overhead view of each S/A was photographed using a VC fixed to the rotating-plug for making observations of the top of S/As and IVS. A resolution was estimated to be approximately 1mm. In order to observe the bottom face of the UCS, a remote handling device equipped with RRFs was specifically developed for Joyo with a tip that can be bent into an L-shape and inserted into the 70 mm gap between the top of the S/As and the bottom of the UCS. The sodium flow regulating grid of 0.8mm in thickness could be discriminated. These experiments provided valuable insights for use in further improving and verifying in-vessel observation techniques in sodium cooled fast reactors.

Journal Articles

In-vessel visual inspection of experimental fast reactor Joyo

Itagaki, Wataru; Sekine, Takashi; Imaizumi, Kazuyuki; Maeda, Shigetaka; Ashida, Takashi; Takamatsu, Misao; Nagai, Akinori; Maeda, Yukimoto

Proceedings of 1st International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA 2009) (USB Flash Drive), 7 Pages, 2009/06

no abstracts in English

Journal Articles

Characterization of neutron fields in the experimental fast reactor Joyo MK-III core

Maeda, Shigetaka; Ito, Chikara; Okawachi, Yasushi; Sekine, Takashi; Aoyama, Takafumi

Reactor Dosimetry State of the Art 2008, p.474 - 482, 2009/00

In 2003 the Joyo reactor upgrade to the MK-III core was completed to increase the irradiation testing capability. This study describes the detail distributions of neutron flux and reaction rate in the MK-III core were experimentally obtained by characterization test during the first two operating cycles. Accuracy of the calculated methods in fast reactor was evaluated by comparing results of DORT, TORT and MCNP. The all calculated reaction rates of $$^{235}$$U(n,f) agreed well with the measured values about 5% in the fuel region and less than 10% in the reflector region and B$$_{4}$$C shielding subassembly. However, a large discrepancy more than 10% was observed in the central non-fuel irradiation test subassembly and radial reflector region by DORT and TORT. The MCNP can reduce this discrepancy to 6%. Specific areas of difference, such as uranium fission reaction in non-fuel subassemblies, are understood and correction methods were identified.

Journal Articles

Enhancement of irradiation capability of the experimental fast reactor Joyo

Maeda, Shigetaka; Sekine, Takashi; Aoyama, Takafumi; Suzuki, Soju

Reactor Dosimetry State of the Art 2008, p.607 - 615, 2009/00

The experimental fast reactor Joyo is the first sodium-cooled fast reactor in Japan. One of the primary missions of it is to perform irradiation tests of fuel and structural materials to support the development of fast reactors. The MK-III high performance core upgrade to enhance the irradiation testing capabilities was completed in 2003. In order to expand Joyo's capabilities for innovative irradiation testing applications, neutron spectrum tailoring, lower irradiation temperature, sample movable devices and fast neutron beam holes are being considered. By this program, the latent core performance is sufficiently drawn. It accurately responds to existing irradiation needs and aims at further various irradiations.

Journal Articles

Irradiation test of fuel containing minor actinides in the experimental fast reactor Joyo

Soga, Tomonori; Sekine, Takashi; Tanaka, Kosuke; Kitamura, Ryoichi; Aoyama, Takafumi

Journal of Power and Energy Systems (Internet), 2(2), p.692 - 702, 2008/00

The mixed oxide containing minor actinides (MA-MOX) fuel irradiation program is being conducted using Joyo. Two irradiation experiments were conducted in the MK-III 3rd operational cycle. Six prepared fuel pins included MOX fuel containing americium, MOX fuel containing americium and neptunium, and reference MOX fuel. The first test was conducted with high linear heat rates of 430 W/cm maintained during only 10 minutes in order to confirm whether or not fuel melting occurred. After 10 minutes irradiation in May 2006, the test subassembly was transferred to the hot cell facility and two test pins were replaced with dummy pins. The test subassembly loaded with the remaining four fuel pins was re-irradiated in Joyo for 24 hours in August 2006 to obtain re-distribution data on MA-MOX fuel. Linear heat rates for each pin were calculated using MCNP. Post irradiation examination of these pins to confirm the irradiation behavior of MA-MOX fuel is underway.

JAEA Reports

Study of ageing effect of long-term storage fuel in prototype fast breeder reactor Monju

Kato, Yuko; Umebayashi, Eiji; Okimoto, Yutaka; Okuda, Eiichi; Takayama, Koichi; Ozawa, Takayuki; Maeda, Seiichiro; Matsuzaki, Masaaki; Yoshida, Eiichi; Maeda, Koji; et al.

JAEA-Research 2007-019, 56 Pages, 2007/03

JAEA-Research-2007-019.pdf:6.79MB

In order to resume the System Startup Test (SST) of Monju, replacement fuel have to be loaded in exchange for some of initial fuel now loaded in the core to compensate core reactivity lost by decay of Pu-241 in them. The replacement fuel were being stored either in sodium in an ex-vessel storage tank or in air in a storage rack for about 10 years since their fabrication. The initial fuel were irradiated during the SST which was suspended in the end of 1995 and then stayed being loaded in the sodium-circulated core. As this long-term storage and loading may deteriorate mechanical integrity of the assemblies, a study has been made thoroughly on its thermal-hydraulic, structural and material effects on them that might be caused by irradiation in the core, sodium and mechanical environment. The study has shown that the mechanical integrity of them is well maintained even with this long-term storage and loading.

Journal Articles

Core performance tests for the JOYO MK-III upgrade

Aoyama, Takafumi; Sekine, Takashi; Maeda, Shigetaka; Yoshida, Akihiro; Maeda, Yukimoto; Suzuki, Soju; Takeda, Toshikazu*

Nuclear Engineering and Design, 237(4), p.353 - 368, 2007/02

 Times Cited Count:17 Percentile:72.04(Nuclear Science & Technology)

Many changes were made in the recent upgrade of the experimental fast reactor JOYO to the MK-III design. The core changes which were made to achieve a fourfold increase in irradiation capacity include the introduction of a second enrichment zone, an increase in core radius and a decrease in core height. Performance tests done at low power, during the rise to power, and at full power, which focus on the neutronics characteristics, are presented. These tests include the nuclear instrumentation system response, the approach to criticality and excess reactivity evaluation, control rod worth calibration, isothermal temperature coefficient evaluation, the calibration of the nuclear instrumentation system with reactor thermal power, and the burn-up reactivity coefficient evaluation. The measurements and comparisons with calculated predictions are shown. The design predictions are consistent with the performance test results, and all technical safety specifications are satisfied. The JOYO MK-III core will provide enhanced irradiation testing capability, as well as serve as a test bed for improving fast reactor operation, performance and safety. Through the performance test evaluation, the core characteristics of a small size sodium cooled fast reactor with a hard neutron spectrum are clarified.

Journal Articles

Methanol permeation properties of crosslinked-PTFE electrolyte membranes for DMFC applications

Sekine, Toshihiko; Sawada, Shinichi; Yamaki, Tetsuya; Asano, Masaharu; Suzuki, Akihiro*; Terai, Takayuki*; Yoshida, Masaru

Transactions of the Materials Research Society of Japan, 31(4), p.871 - 874, 2006/12

no abstracts in English

Journal Articles

JOYO, the irradiation and demonstration test facility of FBR development

Aoyama, Takafumi; Sekine, Takashi; Nakai, Satoru; Suzuki, Soju

Proceedings of 15th Pacific Basin Nuclear Conference (PBNC-15) (CD-ROM), 6 Pages, 2006/10

The experimental fast reactor JOYO is the first liquid sodium fast reactor in Japan. The purpose of constructing JOYO was to obtain technical information about liquid metal fast breeder reactors (LMFBR). In addition to providing operating experience, many kinds of irradiation tests have been conducted for the development of fuels and materials under the conditions of higher fast neutron flux and temperature than those in LWRs. JOYO has been operated successfully since its criticality was first achieved in 1977 without any serious problem, and this operation demonstrated the safety and reliability of the sodium cooled fast reactor. Continual facility improvements have been punctuated by major enhancements, the latest of which is MK-III. Compared to MK-II, MK-III has a four times larger irradiation capability, improved irradiation test vehicles and improved irradiation characterization. The applications of this enhanced capability include testing fuels and safety features for future FBRs, exploring use of fast reactors for transmutation of radioactive waste, and developing advanced materials for fusion power. In light of the shutdown of several fast reactors around the world, the ability to make such major contributions to reactor development takes on even greater significance. Irradiation tests, steady-state and safety related operations of JOYO are also expected to promote the development of JAEA's prototype FBR, Monju.

Journal Articles

Characterization of neutron fields using MCNP in the experimental fast reactor JOYO

Maeda, Shigetaka; Wootan, D. W.; Sekine, Takashi

Journal of ASTM International (Internet), 3(8), 9 Pages, 2006/09

An extensive set of neutron dosimeters ranging from the core center to beyond the reactor vessel were irradiated during the first two operating cycles of the MK-III core to allow a detailed characterization of the neutron spectra and flux distributions for this new core configuration. New analysis methods for predicting the reaction rates for comparison with the dosimetry measurements based on the MCNP code were developed. Analysis of previous MK-II cycle 34-35 dosimetry tests was used to verify the methods. Core models were developed for the different types and locations of dosimetry test assemblies and biasing schemes were developed. MCNP optimization techniques and the C/E differences were explored. Most of the important parameters that affect the reaction rate calculations and measurements were investigated.

Journal Articles

Core management and fast neutron field characterization of JOYO

Okawachi, Yasushi; Sekine, Takashi; Aoyama, Takafumi

JAEA-Conf 2006-003, p.126 - 139, 2006/05

Twenty eight years of operations at the experimental fast reactor JOYO provide a wealth of experience with core management and characterization of fast neutron field. This experience has been applied to several core modifications to upgrade JOYO's irradiation capability. Reactor physics tests and neutron flux measurement results have been used to confirm the accuracy of neutron diffusion theory calculations. These experiences and accumulated data will be useful for the core design in future fast reactors.

120 (Records 1-20 displayed on this page)