Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 126

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of an RPV cooling system for HTGRs

Takamatsu, Kuniyoshi

Kakushinteki Reikyaku Gijutsu; Mekanizumu Kara Soshi, Shisutemu Kaihatsu Made, p.179 - 183, 2024/01

The HTGR has excellent safety, and even in the event of an accident where the reactor coolant is lost, the decay heat and residual heat in the core can be dissipated from the outer surface of the RPV, so the fuel temperature never exceeds the limit value, and the core stabilizes. On the other hand, regarding the cooling system that transports the heat emitted from the RPV to the final heat sink, an active cooling system using forced circulation of water by a pump, etc., and a passive cooling system using natural circulation of the atmosphere have been proposed. However, there is a problem that the cooling performance is affected by the operation of dynamic equipment and weather conditions. This paper presents an overview of a new cooling system concept using radiative cooling, which has been proposed to solve the above problem, and introduces the results of analysis and experiments aimed at confirming the feasibility of this concept.

Journal Articles

Research on improvement of HTGR core power-density, 4; Feasibility study for a reactor core

Okita, Shoichiro; Mizuta, Naoki; Takamatsu, Kuniyoshi; Goto, Minoru; Yoshida, Katsumi*; Nishimura, Yosuke*; Okamoto, Koji*

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05

Journal Articles

Improvement of cooling performance of reactor pressure vessel using passive cooling

Banno, Masaki*; Funatani, Shumpei*; Takamatsu, Kuniyoshi

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

A fundamental study on the safety of a passive cooling system for the RPV with radiative cooling is conducted. The object of this study is to demonstrate that passive RPV cooling system with radiative cooling is extremely safe and reliable even in the event of natural disasters. Therefore, an experimental apparatus, which is about 1/20 scale of the actual cooling system, was fabricated with several stainless steel containers. The surface of the heating element in the experimental apparatus simulates the surface of the RPV, and the heating element generates natural convection and radiation. A comparison of the Grashof number between the actual cooling system and the experimental apparatus confirmed that both were turbulent, and the experimental results as a scale model are valuable. Moreover, the experimental results confirmed that the heat generated from the surface of the RPV during the rated operation can be removed.

Journal Articles

Comparison on safety features among HTGR's Reactor Cavity Cooling Systems (RCCSs)

Takamatsu, Kuniyoshi; Funatani, Shumpei*

Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 17 Pages, 2023/04

The objectives of this study are as follows: to understand the characteristics, degree of passive safety features for heat removal were compared for RCCSs based on atmospheric radiation and based on atmospheric natural circulation under the same conditions. Therefore, the authors concluded that the proposed RCCS based on atmospheric radiation has the advantage that the temperature of the RPV can be stably maintained against disturbances in the outside air (ambient air). Moreover, methodology to utilize all the heat emitted from the RPV surface for increasing the degree of waste-heat utilization was discussed.

Journal Articles

Study on heat transfer characteristics of reactor cavity cooling system using radiation

Banno, Masaki*; Funatani, Shumpei*; Takamatsu, Kuniyoshi

Yamanashi Koenkai 2022 Koen Rombunshu (CD-ROM), 6 Pages, 2022/10

A fundamental study on the safety of a passive cooling system for the reactor pressure vessel (RPV) with radiative cooling is conducted. The object of this study is to demonstrate that passive RPV cooling system with radiative cooling is extremely safe and reliable even in the event of natural disasters. Therefore, an experimental apparatus, which is about 1/20 scale of the actual cooling system, was fabricated with several stainless steel containers. The surface of the heating element in the experimental apparatus simulates the surface of the RPV, and the heating element generates natural convection and radiation. As a result of the experiments, we succeeded in visualizing the natural convection in the experimental apparatus in detail.

Journal Articles

Comparisons between passive RCCSs on degree of passive safety features against accidental conditions and methodology to determine structural thickness of scaled-down heat removal test facilities

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 162, p.108512_1 - 108512_10, 2021/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The objectives of this study are as follows: to understand the characteristics, degree of passive safety features for heat removal were compared for RCCSs based on atmospheric radiation and based on atmospheric natural circulation under the same conditions. Next, simulations on accidental conditions, such as increasing average heat-transfer coefficient via natural convection due to natural disasters, were performed with STAR-CCM+, and methodology to control the amount of heat removal was discussed. As a result, a new RCCS based on atmospheric radiation is recommended because of the excellent degree of passive safety features/conditions, and the amount of heat removal by heat transfer surfaces which can be controlled. Finally, methodology to determine structural thickness of scaled-down heat removal test facilities for reproducing natural convection and radiation was developed, and experimental methods by using pressurized and decompressed chambers was also proposed.

JAEA Reports

Report of summer holiday practical training 2020; Feasibility study on nuclear battery using HTTR core; Feasibility study for nuclear design, 3

Ishitsuka, Etsuo; Mitsui, Wataru*; Yamamoto, Yudai*; Nakagawa, Kyoichi*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Nagasumi, Satoru; Takamatsu, Kuniyoshi; Kenzhina, I.*; et al.

JAEA-Technology 2021-016, 16 Pages, 2021/09

JAEA-Technology-2021-016.pdf:1.8MB

As a summer holiday practical training 2020, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the downsizing of reactor core were studied by the MVP-BURN. As a result, it is clear that a 1.6 m radius reactor core, containing 54 (18$$times$$3 layers) fuel blocks with 20% enrichment of $$^{235}$$U, and BeO neutron reflector, could operate continuously for 30 years with thermal power of 5 MW. Number of fuel blocks of this compact core is 36% of the HTTR core. As a next step, the further downsizing of core by changing materials of the fuel block will be studied.

Journal Articles

Comparison between passive reactor cavity cooling systems based on atmospheric radiation and atmospheric natural circulation

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 151, p.107867_1 - 107867_11, 2021/02

 Times Cited Count:1 Percentile:16.35(Nuclear Science & Technology)

A new RCCS with passive safety features consists of two continuous closed regions. One is a region surrounding RPV. The other is a cooling region with heat transferred to the ambient air. The new RCCS needs no electrical or mechanical driving devices. We compared the RCCS using atmospheric radiation with that using atmospheric natural circulation in terms of passive safety features and control methods for heat removal. The magnitude relationship for passive safety features is heat conduction $$>$$ radiation $$>$$ natural convection. Therefore, the magnitude for passive safety features of the former RCCS can be higher than that of the latter RCCS. In controlling the heat removal, the former RCCS changes the heat transfer area only. On the other hand, the latter RCCS needs to change the chimney effect. It is necessary to change the air resistance in the duct. Therefore, the former RCCS can control the heat removal more easily than the latter RCCS.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

JAEA Reports

Report of summer holiday practical training 2019; Feasibility study on nuclear battery using HTTR core; Feasibility study for nuclear design, 2

Ishitsuka, Etsuo; Nakashima, Koki*; Nakagawa, Naoki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Matsuura, Hideaki*; et al.

JAEA-Technology 2020-008, 16 Pages, 2020/08

JAEA-Technology-2020-008.pdf:2.98MB

As a summer holiday practical training 2019, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the $$^{235}$$U enrichment and burnable poison of the fuel, which enables continuous operation for 30 years with thermal power of 5 MW, were studied by the MVP-BURN. As a result, it is clear that a fuel with $$^{235}$$U enrichment of 12%, radius of burnable poison and natural boron concentration of 1.5 cm and 2wt% are required. As a next step, the downsizing of core will be studied.

Journal Articles

Comparative methodology between actual RCCS and downscaled heat-removal test facility

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 133, p.830 - 836, 2019/11

 Times Cited Count:2 Percentile:21.58(Nuclear Science & Technology)

A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. Moreover, the authors started experiment research with using a scaled-down heat-removal test facility. Therefore, this study propose a comparative methodology between an actual RCCS and a scaled-down heat-removal test facility.

JAEA Reports

Report of summer holiday practical training 2018; Feasibility study on nuclear battery using HTTR core; Feasibility study for nuclear design

Ishitsuka, Etsuo; Matsunaka, Kazuaki*; Ishida, Hiroki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Kondo, Atsushi*; et al.

JAEA-Technology 2019-008, 12 Pages, 2019/07

JAEA-Technology-2019-008.pdf:2.37MB

As a summer holiday practical training 2018, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out. As a result, it is become clear that the continuous operations for about 30 years at 2 MW, about 25 years at 3 MW, about 18 years at 4 MW, about 15 years at 5 MW are possible. As an image of thermal design, the image of the nuclear battery consisting a cooling system with natural convection and a power generation system with no moving equipment is proposed. Further feasibility study to confirm the feasibility of nuclear battery will be carried out in training of next fiscal year.

Journal Articles

Improvement of heat-removal capability using heat conduction on a novel reactor cavity cooling system (RCCS) design with passive safety features through radiation and natural convection

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 122, p.201 - 206, 2018/12

 Times Cited Count:3 Percentile:30.05(Nuclear Science & Technology)

A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. This study addresses an improvement of heat-removal capability using heat conduction on the RCCS. As a result, a heat flux removed by the RCCS could be doubled; therefore, it is possible to halve the height of the RCCS or increase the thermal reactor power.

Journal Articles

Experimental study on heat removal performance of a new Reactor Cavity Cooling System (RCCS)

Hosomi, Seisuke*; Akashi, Tomoyasu*; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*; Takamatsu, Kuniyoshi

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11

A new RCCS with passive safety features consists of two continuous closed regions. One is a region surrounding RPV. The other is a cooling region with heat transferred to the ambient air. The new RCCS needs no electrical or mechanical driving devices. We started experiment research with using a scaled-down test section. Three experimental cases under different emissivity conditions were performed. We used Monte Carlo method to evaluate the contribution of radiation to the total heat released from the heater. As a result, after the heater wall was painted black, the contribution of radiation to the total heat could be increased to about 60%. A high emissivity of RPV surface is very effective to remove more heat from the reactor. A high emissivity of the cooling part wall is also effective because it not only increases the radiation emitted to the ambient air, but also may increase the temperature difference among the walls and enhance the convection heat transfer in the RCCS.

Journal Articles

Thermal-hydraulic analyses of the High-Temperature engineering Test Reactor for loss of forced cooling at 30% reactor power

Takamatsu, Kuniyoshi

Annals of Nuclear Energy, 106, p.71 - 83, 2017/08

The HTTR, which is the only HTGR having inherent safety features in Japan, conducted a safety demonstration test involving a loss of both reactor reactivity control and core cooling. The paper shows thermal-hydraulics during the LOFC test at an initial power of 30% reactor power (9 MW), when the insertion of all control rods was disabled and all gas circulators were tripped to reduce the coolant flow rate to zero. The analytical results could show that the downstream of forced convection caused by the HPS pushes down the upstream by natural convection in the fuel assemblies; however, the forced convection has little influence on the core thermal-hydraulics without the reactor outlet coolant temperature. As a result, the three-dimensional thermal-phenomena inside the RPV during the LOFC test could be understood qualitatively.

Journal Articles

Determination of reactivity and neutron flux using modified neural network for HTGR

Subekti, M.*; Kudo, Kazuhiko*; Nabeshima, Kunihiko; Takamatsu, Kuniyoshi

Atom Indonesia, 43(2), p.93 - 102, 2017/08

Reactor kinetics based on point kinetic model have been generally applied as the standard method for neutronics codes. As the central control rod (C-CR) withdrawal test has demonstrated in a prismatic core of HTTR, the transient calculation of kinetic parameter, such as reactivity and neutron fluxes, requires a new method to shorten calculation-process time. Development of neural network method was applied to point kinetic model as the necessity of real-time calculation that could work in parallel with the digital reactivity meter. The combination of TDNN and Jordan RNN, such as TD-Jordan RNN, was the result of the modeling approach. The application of TD-Jordan RNN with adequate learning, tested offline, determined results accurately even when signal inputs were noisy. Furthermore, the preprocessing for neural network input utilized noise reduction as one of the equations to transform two of twelve time-delayed inputs into power corrected inputs.

Journal Articles

New reactor cavity cooling system (RCCS) with passive safety features; A Comparative methodology between a real RCCS and a scaled-down heat-removal test facility

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Morita, Koji*

Annals of Nuclear Energy, 96, p.137 - 147, 2016/10

 Times Cited Count:5 Percentile:43.41(Nuclear Science & Technology)

After Fukushima Daiichi nuclear disaster by TEPCO, a cooling system to prevent core damage became more important from the perspective of defense in depth. Therefore, a new, highly efficient RCCS with passive safety features without a requirement for electricity and mechanical drive is proposed. Employing the air as the working fluid and the ambient air as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. The RCCS can always stably and passively remove a part of the released heat at the rated operation and the decay heat after reactor shutdown. Specifically, emergency power generators are not necessary and the decay heat can be passively removed for a long time, even forever if the heat removal capacity of the RCCS is sufficient. We can also define the experimental conditions on radiation and natural convection for the scale-down heat removal test facility.

Journal Articles

Successful visualization of internal structures of reactor core in the HTTR; Non-destructive inspection by cosmic-ray muon radiography

Takamatsu, Kuniyoshi

Hihakai Kensa, 65(5), p.207 - 210, 2016/05

JP, 2010-166333   Licensable Patent Information Database   Patent publication (In Japanese)

In our study, we focused on a nondestructive inspection method by cosmic-ray muons which could be used to observe the internal reactor from outside the RPV and the CV. We conducted an observation test on the HTTR to evaluate the applicability of the method to the internal visualization of a reactor. We also analytically evaluated the resolution of existing muon telescopes to assess their suitability for the HTTR observation, and were able to detect the major structures of the HTTR based on the distribution of the surface densities calculated from the coincidences measured by the telescopes. Our findings suggested that existing muon telescopes could be used for muon observation of the internal reactor from outside the RPV and CV.

Journal Articles

New reactor cavity cooling system with a novel shape and passive safety features

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Morita, Koji*

Proceedings of 2016 International Congress on Advances in Nuclear Power Plants (ICAPP 2016) (CD-ROM), p.1250 - 1257, 2016/04

After Fukushima Daiichi nuclear disaster by TEPCO, a cooling system to prevent core damage became more important from the perspective of defense in depth. Therefore, a new, highly efficient RCCS with passive safety features without a requirement for electricity and mechanical drive is proposed. Employing the air as the working fluid and the ambient air as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. The RCCS can always stably and passively remove a part of the released heat at the rated operation and the decay heat after reactor shutdown. Specifically, emergency power generators are not necessary and the decay heat can be passively removed for a long time, even forever if the heat removal capacity of the RCCS is sufficient. We can also define the experimental conditions on radiation and natural convection for the scale-down heat removal test facility.

Journal Articles

Visualization of internal structures of reactor core in the HTTR; Proposal of non-destructive inspection by cosmic-ray muon radiography

Takamatsu, Kuniyoshi

Hokeikyo Nyusu, (56), p.2 - 4, 2015/10

JP, 2010-166333   Licensable Patent Information Database   Patent publication (In Japanese)

In our study, we focused on a nondestructive inspection method by cosmic-ray muons which could be used to observe the internal reactor from outside the RPV and the CV. We conducted an observation test on the HTTR to evaluate the applicability of the method to the internal visualization of a reactor. We also analytically evaluated the resolution of existing muon telescopes to assess their suitability for the HTTR observation, and were able to detect the major structures of the HTTR based on the distribution of the surface densities calculated from the coincidences measured by the telescopes. Our findings suggested that existing muon telescopes could be used for muon observation of the internal reactor from outside the RPV and CV.

126 (Records 1-20 displayed on this page)