Refine your search:     
Report No.
 - 
Search Results: Records 1-18 displayed on this page of 18
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on plutonium burner high temperature gas-cooled reactor in Japan; Introduction scenario, reactor safety and fabrication tests of the 3S-TRISO fuel

Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.

Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02

 Times Cited Count:1 Percentile:12.16(Nuclear Science & Technology)

The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.

Journal Articles

Conceptual study of a plutonium burner high temperature gas-cooled reactor with high nuclear proliferation resistance

Goto, Minoru; Demachi, Kazuyuki*; Ueta, Shohei; Nakano, Masaaki*; Honda, Masaki*; Tachibana, Yukio; Inaba, Yoshitomo; Aihara, Jun; Fukaya, Yuji; Tsuji, Nobumasa*; et al.

Proceedings of 21st International Conference & Exhibition; Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL 2015) (USB Flash Drive), p.507 - 513, 2015/09

A concept of a plutonium burner HTGR named as Clean Burn, which has a high nuclear proliferation resistance, had been proposed by Japan Atomic Energy Agency. In addition to the high nuclear proliferation resistance, in order to enhance the safety, we propose to introduce PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating to the Clean Burn. In this study, we conduct fabrication tests aiming to establish the basic technologies for fabrication of PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating. Additionally, we conduct a quantitative evaluation of the security for the safety, a design of the fuel and the reactor core, and a safety evaluation for the Clean Burn to confirm the feasibility. This study is conducted by The University of Tokyo, Japan Atomic Energy Agency, Fuji Electric Co., Ltd., and Nuclear Fuel Industries, Ltd. It was started in FY2014 and will be completed in FY2017, and the first year of the implementation was on schedule.

Journal Articles

Irradiation performance of HTGR fuel in WWR-K research reactor

Ueta, Shohei; Shaimerdenov, A.*; Gizatulin, S.*; Chekushina, L.*; Honda, Masaki*; Takahashi, Masashi*; Kitagawa, Kenichi*; Chakrov, P.*; Sakaba, Nariaki

Proceedings of 7th International Topical Meeting on High Temperature Reactor Technology (HTR 2014) (USB Flash Drive), 7 Pages, 2014/10

A capsule irradiation test with the high temperature gas-cooled reactor (HTGR) fuel is being carried out using WWR-K research reactor in the Institute of Nuclear Physics of the Republic of Kazakhstan (INP) to attain 100 GWd/t-U of burnup under normal operating condition of a practical small-sized HTGR. This is the first HTGR fuel irradiation test for INP in Kazakhstan collaborated with Japan Atomic Energy Agency (JAEA) in frame of International Science and Technology Center (ISTC) project. In the test, TRISO coated fuel particle with low-enriched UO$$_{2}$$ (less than 10% of $$^{235}$$U) is used, which was newly designed by JAEA to extend burnup up to 100 GWd/t-U comparing with that of the HTTR (33 GWd/t-U). Both TRISO and fuel compact as the irradiation test specimen were fabricated in basis of the HTTR fuel technology by Nuclear Fuel Industries, Ltd. in Japan. A helium-gas-swept capsule and a swept-gas sampling device installed in WWR-K were designed and constructed by INP. The irradiation test has been started in October 2012 and will be completed up to the end of February 2015. The irradiation test is in the progress up to 69 GWd/t of burnup, and integrity of new TRISO fuel has been confirmed. In addition, as predicted by the fuel design, fission gas release was observed due to additional failure of as-fabricated SiC-defective fuel.

Journal Articles

Uniaxial-pressure control of magnetic phase transitions in a frustrated magnet CuFe$$_{1-x}$$Ga$$_{x}$$O$$_{2}$$ (x =0, 0.018)

Nakajima, Taro*; Mitsuda, Setsuo*; Takahashi, Keiichiro*; Yoshitomi, Keisuke*; Masuda, Kazuya*; Kaneko, Chikafumi*; Homma, Yuki*; Kobayashi, Satoru*; Kitazawa, Hideaki*; Kosaka, Masashi*; et al.

Journal of the Physical Society of Japan, 81(9), p.094710_1 - 094710_8, 2012/09

Journal Articles

Uniaxial-pressure control of magnetic phase transitions in a frustrated magnet CuFe$$_{1-x}$$Ga$$_{x}$$O$$_{2}$$ ($$x$$ = 0, 0.018)

Nakajima, Taro*; Mitsuda, Setsuo*; Takahashi, Keiichiro*; Yoshitomi, Keisuke*; Masuda, Kazuya*; Kaneko, Chikafumi*; Homma, Yuki*; Kobayashi, Satoru*; Kitazawa, Hideaki*; Kosaka, Masashi*; et al.

Journal of the Physical Society of Japan, 81(9), p.094710_1 - 094710_8, 2012/09

 Times Cited Count:13 Percentile:63.29(Physics, Multidisciplinary)

Journal Articles

KEK ERL cryomodule development

Sakai, Hiroshi*; Furuya, Takaaki*; Kako, Eiji*; Noguchi, Shuichi*; Sato, Masato*; Sakanaka, Shogo*; Shishido, Toshio*; Takahashi, Takeshi*; Umemori, Kensei*; Watanabe, Ken*; et al.

Proceedings of 45th Advanced ICFA Beam Dynamics Workshop on Energy Recovery Linacs (ERL '09) (Internet), p.57 - 62, 2010/05

Development of a SC Cavity Injector Cryomodule and Main linac Cryomodule for the compact ERL is being continued at KEK since 2006. Design of an injector cryomodule containing three 2-cell 1.3-GHz cavities for Injector Cryomodule and two 9-cell 1.3-GHz cavities for Main linac Cryomodule are almost completed. Status of R&D and design details are reported.

Journal Articles

Compact ERL linac

Umemori, Kensei*; Furuya, Takaaki*; Kako, Eiji*; Noguchi, Shuichi*; Sakai, Hiroshi*; Sato, Masato*; Shishido, Toshio*; Takahashi, Takeshi*; Watanabe, Ken*; Yamamoto, Yasuchika*; et al.

Proceedings of 14th International Conference on RF Superconductivity (SRF 2009) (Internet), p.896 - 901, 2009/09

Construction of the Compact ERL is planned in Japan, in order to test the key technology to realize a future ERL based X-ray light source. The operation of 60-200 MeV beam energy and 100 mA beam current are proposed. The superconducting cavity is one of the key components and applied for the injector part and the main linac part. At the injector part, most challenging issue is an input coupler, which has to handle more than 300 kW input power per cavity. On the other hand, strong HOM damping is required for the main linac, in order to avoid beam instabilities and large heat load at cryomodules. Status of cavity developments, together with cryomodule developments, including input couplers and HOM couplers/absorbers, are described in this paper.

Journal Articles

Research and development on HTGR fuel

Ueta, Shohei; Aihara, Jun; Yasuda, Atsushi; Izumiya, Toru*; Takahashi, Masashi*; Kato, Shigeru*; Sawa, Kazuhiro

Koon Gakkai-Shi, 32(1), p.27 - 35, 2006/01

In the high temperature gas-cooled reactors (HTGRs), refractory coated fuel particles are employed as fuel to permit high outlet coolant temperature. The High Temperature Engineering Test Reactor (HTTR) employs Tri-isotropic (Triso) coated fuel particles in the prismatic fuel assembly. Research and development on the HTTR fuel has been carried out spread over about 30 years, in fuel fabrication technologies, fuel performance, and so on. Furthermore, for upgrading of HTGR technologies, an extended burnup TRISO-coated fuel particle and an advanced type of coated fuel particle, ZrC-coated fuel particle in order to keep the integrity at higher operating temperatures has been developed. The present paper provides experiences and status of research and development works for the HTGR fuel in the HTTR Project.

JAEA Reports

An Investigation of fuel and fission product behavior in rise-to-power test of HTTR, 2; Results up to 30 MW operation

Ueta, Shohei; Emori, Koichi; Tobita, Tsutomu*; Takahashi, Masashi*; Kuroha, Misao; Ishii, Taro*; Sawa, Kazuhiro

JAERI-Research 2003-025, 59 Pages, 2003/11

JAERI-Research-2003-025.pdf:2.53MB

In the safety design requirements for the High Temperature Engineering Test Reactor (HTTR) fuel, it is determined that "the as-fabricated failure fraction shall be less than 0.2%" and "the additional failure fraction shall be small through the full service period". Therefore the failure fraction should be quantitatively evaluated during the HTTR operation. In order to measure the primary coolant activity, primary coolant radioactivity signals the in safety protection system, the fuel failure detection (FFD) system and the primary coolant sampling system are provided in the HTTR. The fuel and fission product behavior was evaluated based on measured data in the rise-to-power tests (1) to (4). The measured fractional releases are constant at 2$$times$$10$$^{-9}$$ up to 60% of the reactor power, and then increase to 7$$times$$10$$^{-9}$$ at full power operation. The prediction shows good agreement with the measured value. These results showed that the release mechanism varied from recoil to diffusion of the generated fission gas from the contaminated uranium in the fuel compact matrix.

Journal Articles

Fuel and fission gas behavior during rise-to-power test of the High Temperature engineering Test Reactor (HTTR)

Ueta, Shohei; Sumita, Junya; Emori, Koichi; Takahashi, Masashi*; Sawa, Kazuhiro

Journal of Nuclear Science and Technology, 40(9), p.679 - 686, 2003/09

 Times Cited Count:13 Percentile:64.66(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Plan to development of ZrC-TRISO coated fuel particle and construction of ZrC coater

Ueta, Shohei; Tobita, Tsutomu*; Ino, Hiroichi*; Takahashi, Masashi*; Sawa, Kazuhiro

JAERI-Tech 2002-085, 41 Pages, 2002/11

JAERI-Tech-2002-085.pdf:2.66MB

no abstracts in English

JAEA Reports

Calibration test of $$gamma$$-energy analysis system for fuel and fission gas behavior during High Temperature Engineering Test Reactor operation

Ueta, Shohei; Tobita, Tsutomu*; Takahashi, Masashi*; Sawa, Kazuhiro

JAERI-Tech 2002-055, 24 Pages, 2002/07

JAERI-Tech-2002-055.pdf:1.04MB

no abstracts in English

JAEA Reports

Acceleration irradiation test of first-loading fuel of High Temperature Engineering Test Reactor (HTTR) up to high burnup (Joint research)

Sawa, Kazuhiro; Sumita, Junya; Ueta, Shohei; Takahashi, Masashi; Tobita, Tsutomu*; Hayashi, Kimio; Saito, Takashi; Suzuki, Shuichi*; Yoshimuta, Shigeharu*; Kato, Shigeru*

JAERI-Research 2002-012, 39 Pages, 2002/06

JAERI-Research-2002-012.pdf:3.12MB

no abstracts in English

JAEA Reports

Comparison of HTGR fuel design, manufacture and quality control methods between Japan and China

Fu, X.*; Takahashi, Masashi; Ueta, Shohei; Sawa, Kazuhiro

JAERI-Tech 2002-049, 35 Pages, 2002/05

JAERI-Tech-2002-049.pdf:3.01MB

no abstracts in English

JAEA Reports

Improvement of fuel fabrication process for High Temperature Engineering Test Reactor; Countermeasures to criticality accident

Takahashi, Masashi; Ueta, Shohei; Yasuda, Atsushi*; Yoshimuta, Shigeharu*; Kato, Shigeru*; Sawa, Kazuhiro

JAERI-Tech 2001-091, 29 Pages, 2002/01

JAERI-Tech-2001-091.pdf:2.38MB

no abstracts in English

JAEA Reports

Irradiation test of high burnup coated fuel particles for High Temperature Gas-cooled Reactor; 91F-1A Sweap gas capsule irradiation test

Sawa, Kazuhiro; Tobita, Tsutomu*; Takahashi, Masashi; Saito, Takashi; Iimura, Katsumichi; Yokouchi, Iichiro; Serizawa, Hiroyuki; Sekino, Hajime; Ishikawa, Akiyoshi

JAERI-Research 2001-043, 52 Pages, 2001/09

JAERI-Research-2001-043.pdf:14.92MB

no abstracts in English

Oral presentation

Research and development on HTGR fuel in JAEA

Sawa, Kazuhiro; Aihara, Jun; Ueta, Shohei; Mozumi, Yasuhiro; Kato, Shigeru*; Takahashi, Masashi*

no journal, , 

In the field of HTGR fuel, JAEA has carried out a lot of research and development works in the frame of the High Temperature Engineering Test Reactor (HTTR) Project. The fuel fabrication technologies were developed with the collaboration of the Nuclear Fuel Industry Co. Ltd.. Fuel performance was investigated by Oarai Gas Loop-1 and capsule irradiation tests, which were installed at the Japan Materials Test Reactor. The fuel performance and fission product behavior are under investigation through the HTTR operation. For upgrading of HTGR technologies, JAEA has also developed an extended burnup TRISO-coated fuel particle, and an advanced type of coated fuel particle. This paper provides experiences and present status of research and development works for the HTGR fuel.

Oral presentation

Development on extended burnup fuel technologies for practical high temperature gas-cooled reactors; Collaborative research with Kazakhstan

Ueta, Shohei; Shibata, Taiju; Aihara, Jun; Shaimerdenov, A.*; Dyussambayev, D.*; Takahashi, Masashi*; Kinoshita, Hideaki*; Gizatulin, S.*; Sakaba, Nariaki

no journal, , 

To develop the highly-qualified, mass-produced coated fuel particle in Japan which is supposed to be introduced to small modular commercial high temperature gas-cooled reactors (HTGRs), a dimensional specification of the fuel has been determined to attain three times higher burnup than that of the HTTR (High Temperature Engineering Test Reactor). Fabrication technologies of the fuel have been established in collaboration with Japanese nuclear fuel fabricator. As results on irradiation test and post irradiation examination at the Institute of Nuclear Physics in Kazakhstan via acceptances of two Regular Projects of ISTC (International Science and Technology Center), an excellent performance of the fuel under irradiation has been confirmed. Finally, technologies to extend the burnup for the highly-qualified, mass-produced HTGR fuel have been established first in the world.

18 (Records 1-18 displayed on this page)
  • 1