Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Numerical evaluation on fluctuation absorption characteristics based on nuclear heat supply fluctuation test using HTTR

Takada, Shoji; Honda, Yuki*; Inaba, Yoshitomo; Sekita, Kenji; Nemoto, Takahiro; Tochio, Daisuke; Ishii, Toshiaki; Sato, Hiroyuki; Nakagawa, Shigeaki; Sawa, Kazuhiro*

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10

Nuclear heat utilization systems connected to HTGRs will be designed on the basis of non-nuclear grade standards for easy entry of chemical plant companies, requiring reactor operations to continue even if abnormal events occur in the systems. The inventory control is considered as one of candidate methods to control reactor power for load following operation for siting close to demand area, in which the primary gas pressure is varied while keeping the reactor inlet and outlet coolant temperatures constant. Numerical investigation was carried out based on the results of nuclear heat supply fluctuation tests using HTTR by non-nuclear heating operation to focus on the temperature transient of the reactor core bottom structure by imposing stepwise fluctuation on the reactor inlet temperature under different primary gas pressures below 120C. As a result, it was emerged that the fluctuation absorption characteristics are not deteriorated by lowering pressure. It was also emerged that the reactor outlet temperature did not reach the scram level by increasing the reactor inlet temperature 10 C stepwise at 80% of the rated power as same with the full power case.

Journal Articles

Investigation of absorption characteristics for thermal-load fluctuation using HTTR

Tochio, Daisuke; Honda, Yuki; Sato, Hiroyuki; Sekita, Kenji; Homma, Fumitaka; Sawahata, Hiroaki; Takada, Shoji; Nakagawa, Shigeaki

Journal of Nuclear Science and Technology, 54(1), p.13 - 21, 2017/01

 Times Cited Count:1 Percentile:10.58(Nuclear Science & Technology)

GTHTR300C is designed and developed in JAEA. The reactor system is required to continue a stable and safety operation as well as a stable power supply in the case that thermal-load is fluctuated by the occurrence of abnormal event in the heat utilization system. Then, it is necessary to demonstrate that the thermal-load fluctuation should be absorbed by the reactor system so as to continue the stable and safety operation could be continued. The thermal-load fluctuation absorption tests without nuclear heating were planned and conducted in JAEA to clarify the absorption characteristic of thermal-load fluctuation mainly by the reactor and by the IHX. As the result it was revealed that the reactor has the larger absorption capacity of thermal-load fluctuation than expected one, and the IHX can be contributed to the absorption of the thermal-load fluctuation generated in the heat utilization system in the reactor system. It was confirmed from there result that the reactor and the IHX has effective absorption capacity of the thermal-load fluctuation generated in the heat utilization system. Moreover it was confirmed that the safety estimation code based on RELAP5/MOD3 can represents the thermal-load fluctuation absorption behavior conservatively.

Journal Articles

Nuclear heat supply fluctuation tests by non-nuclear heating with HTTR

Inaba, Yoshitomo; Sekita, Kenji; Nemoto, Takahiro; Honda, Yuki; Tochio, Daisuke; Sato, Hiroyuki; Nakagawa, Shigeaki; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 2(4), p.041001_1 - 041001_7, 2016/10

The nuclear heat utilization systems connected to High Temperature Gas-cooled Reactors (HTGRs) will be designed on the basis of non-nuclear grade standards in terms of the easier entry of chemical plant companies and the construction economics of the systems. Therefore, it is necessary that the reactor operations can be continued even if abnormal events occur in the systems. The Japan Atomic Energy Agency has developed a calculation code to evaluate the absorption of thermal load fluctuations by the reactors when the reactor operations are continued after such events, and has improved the code based on the High Temperature engineering Test Reactor (HTTR) operating data. However, there were insufficient data on the transient temperature behavior of the metallic core side components and the graphite core support structures corresponding to the fluctuation of the reactor inlet coolant temperature for further improvement of the code. Thus, nuclear heat supply fluctuation tests with the HTTR were carried out in non-nuclear heating operation to focus on thermal effect. In the tests, the coolant helium gas temperature was heated up to 120$$^{circ}$$C by the compression heat of the gas circulators in the HTTR, and a sufficiently high fluctuation of 17$$^{circ}$$C by devising a new test procedure was imposed on the reactor inlet coolant under the ideal condition without the effect of the nuclear power. Then, the temperature responses of the metallic core side components and the graphite core support structures were investigated. The test results adequately showed as predicted that the temperature responses of the metallic components are faster than those of the graphite structures, and the mechanism of the thermal load fluctuation absorption by the metallic components was clarified.

JAEA Reports

HTTR thermal load fluctuation test (non-nuclear heating test); Confirmation of HTGR system response against temperature transient

Honda, Yuki; Tochio, Daisuke; Nakagawa, Shigeaki; Sekita, Kenji; Homma, Fumitaka; Sawahata, Hiroaki; Sato, Hiroyuki; Sakaba, Nariaki; Takada, Shoji

JAEA-Technology 2016-016, 16 Pages, 2016/08

JAEA-Technology-2016-016.pdf:2.84MB

A system analysis code is validated with the thermal-load fluctuation absorption test with nun-nuclear heating by using the High Temperature Engineering test Reactor (HTTR) to clarify the High Temperature Gas-cooled Reactor (HTGR) system response against temperature transient. The thermal-load fluctuation absorption test consists on the thermal load fluctuation tests (non-nuclear heating) and heat application system abnormal simulating test (non-nuclear heating). The HTGR reactor response against temperature transient is clarified in the thermal load fluctuation test (non-nuclear heating). The Intermediate Heat Exchanger (IHX) reactor response against temperature transient is clarified in the heat application system abnormal simulating test (non-nuclear heating). With the two HTTR non-nuclear heating test, HTGR system response against temperature transient is obtained.

Journal Articles

Nuclear heat supply fluctuation test by non-nuclear heating using HTTR

Takada, Shoji; Sekita, Kenji; Nemoto, Takahiro; Honda, Yuki; Tochio, Daisuke; Inaba, Yoshitomo; Sato, Hiroyuki; Nakagawa, Shigeaki; Sawa, Kazuhiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

To investigate the safety design criteria of heat utilization system for the HTGRs, it is necessary to evaluate the effect of fluctuation of thermal load on the reactor. The nuclear heat supply fluctuation test by non-nuclear heating was carried out to simulate the nuclear heat supply test which is carried out in the nuclear powered operation. The test data is used to verify the numerical code to calculate the temperature of core bottom structure to carry out the safety evaluation of abnormal events in the heat utilization system. In the test, the helium gas temperature was heated up to 120$$^{circ}$$C. A sufficiently high temperature disturbance was imposed on the reactor inlet temperature. It was found that the response of temperatures of metallic components such as side shielding blocks was faster than those of graphite blocks in the core bottom structure, which was significantly affected by the heat capacities of components, the level of imposed disturbance and heat transfer performance.

Journal Articles

Single-shot observation of growing streamers using an ultrafast camera

Takahashi, Eiichi*; Kato, Susumu*; Furutani, Hirohide*; Sasaki, Akira; Kishimoto, Yasuaki*; Takada, Kenji*; Matsumura, Satoshi*; Sasaki, Hiroyasu*

Journal of Physics D; Applied Physics, 44(30), p.302001_1 - 302001_4, 2011/08

 Times Cited Count:7 Percentile:31.11(Physics, Applied)

A recently developed ultrafast camera that can acquire $$10^8$$ frames per second was used to investigate positive streamer discharge. It enabled single-shot evaluation of streamer evolution without the need to consider shot-to-shot reproducibility. This camera was used to investigate streamers in argon. Growing branches, the transition when a streamer forms a return stroke, and related phenomena were clearly observed.

Oral presentation

Completion of long term high temperature operation of HTTR (High Temperature Engineering Test Reactor), 1; Outline of test plan

Takada, Shoji; Sekita, Kenji; Kameyama, Yasuhiko; Saito, Kenji; Iigaki, Kazuhiko; Sawa, Kazuhiro; Tachibana, Yukio

no journal, , 

JAEA has carried out R&Ds to establish the basis of HTGR technology. The long term high temperature operation of 50 days has been successfully completed by HTTR first in the world. The operation was initiated on Jan. 22, 2010 and completed on Mar. 13 to demonstrate long term supply of high temperature heat for hydrogen production. The operation period was set 50 days by considering the following reasons; (1) changes of characteristics and performance deterioration can be confirmed, (2) not only to acquire the data on plant dynamics necessary for design and safety review but also to demonstrate stability as a heat source during long term continuous operation. The core burn-up characteristics, impurity control of helium gas, performance of high temperature components, integrity of internal core structure components were evaluated by the test data acquired through the operation.

Oral presentation

Development of operation and maintenance technique with long term high temperature operation in HTTR, 1; Impurity control for graphite and high temperature instruments

Hamamoto, Shimpei; Shimazaki, Yosuke; Sekita, Kenji; Saito, Kenji; Iigaki, Kazuhiko; Takada, Shoji

no journal, , 

no abstracts in English

Oral presentation

Characteristic confirmation test by using HTTR

Honda, Yuki; Aono, Tetsuya; Sekita, Kenji; Tochio, Daisuke; Takada, Shoji

no journal, , 

The Characteristic confirmation test has been demonstrating by using the High Temperature engineering Test Reactor (HTTR) to confirm the High Temperature Gas Reactor (HTGR) characteristics, which are safety characteristics and various heat utilization. The characteristic confirmation test by using the HTTR consists of the limit performance test and nuclear heat supply fluctuation test. The nuclear heat supply fluctuation testis planned to be carried out after restarting of the HTTR. Towards the realization of industrial utilization of a HTGR cogeneration system as an extension of a nuclear plant, it is important to ensure reactor safety in the case that thermal-load of the facility is fluctuated or lost. The HTTR is under long-term shutdown. However, two nuclear heat supply fluctuation tests were demonstrated without nuclear heating. This report shows outline, progress and results of characteristic confirmation test.

10 (Records 1-10 displayed on this page)
  • 1