Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of event-type neutron imaging detectors at the energy-resolved neutron imaging system RADEN at J-PARC

Parker, J. D.*; Harada, Masahide; Hayashida, Hirotoshi*; Hiroi, Kosuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Nakatani, Takeshi; Oikawa, Kenichi; Segawa, Mariko; Shinohara, Takenao; et al.

Materials Research Proceedings, Vol.15, p.102 - 107, 2020/05

Journal Articles

Controlled growth of boron-doped epitaxial graphene by thermal decomposition of a B$$_{4}$$C thin film

Norimatsu, Wataru*; Matsuda, Keita*; Terasawa, Tomoo; Takata, Nao*; Masumori, Atsushi*; Ito, Keita*; Oda, Koji*; Ito, Takahiro*; Endo, Akira*; Funahashi, Ryoji*; et al.

Nanotechnology, 31(14), p.145711_1 - 145711_7, 2020/04

 Times Cited Count:6 Percentile:37.51(Nanoscience & Nanotechnology)

We show that boron-doped epitaxial graphene can be successfully grown by thermal decomposition of a boron carbide thin film, which can also be epitaxially grown on a silicon carbide substrate. The interfaces of B$$_{4}$$C on SiC and graphene on B$$_{4}$$C had a fixed orientation relation, having a local stable structure with no dangling bonds. The first carbon layer on B$$_{4}$$C acts as a buffer layer, and the overlaying carbon layers are graphene. Graphene on B$$_{4}$$C was highly boron doped, and the hole concentration could be controlled over a wide range of 2$$times$$10$$^{13}$$ to 2$$times$$10$$^{15}$$ cm$$^{-2}$$. Highly boron-doped graphene exhibited a spin-glass behavior, which suggests the presence of local antiferromagnetic ordering in the spin-frustration system. Thermal decomposition of carbides holds the promise of being a technique to obtain a new class of wafer-scale functional epitaxial graphene for various applications.

Journal Articles

Electron-tracking Compton camera imaging of technetium-95m

Hatsukawa, Yuichi*; Hayakawa, Takehito*; Tsukada, Kazuaki; Hashimoto, Kazuyuki*; Sato, Tetsuya; Asai, Masato; Toyoshima, Atsushi; Tanimori, Toru*; Sonoda, Shinya*; Kabuki, Shigeto*; et al.

PLOS ONE (Internet), 13(12), p.e0208909_1 - e0208909_12, 2018/12

AA2018-0639.pdf:2.39MB

 Times Cited Count:3 Percentile:29.51(Multidisciplinary Sciences)

Imaging of $$^{95m}$$Tc radioisotope was conducted using an electron tracking-Compton camera (ETCC). $$^{95m}$$Tc emits 204, 582, and 835 keV $$gamma$$ rays, and was produced in the $$^{95}$$Mo(p,n)$$^{95m}$$Tc reaction with a $$^{95}$$Mo-enriched target. The recycling of the $$^{95}$$Mo-enriched molybdenum trioxide was investigated, and the recycled yield of $$^{95}$$Mo was achieved to be 70% - 90%. The images were obtained with each of the three $$gamma$$ rays. Results showed that the spatial resolution increases with increasing $$gamma$$-ray energy, and suggested that the ETCC with high-energy $$gamma$$-ray emitters such as $$^{95m}$$Tc is useful for the medical imaging of deep tissue and organs in the human body.

Oral presentation

Study of method of measurement of the $$beta$$-ray 3mm dose equivalent and protection measures of the lens of eyes, 1; Ionization chamber

Takimoto, Misaki; Yamazaki, Takumi; Imahashi, Atsushi; Hoshi, Katsuya; Kawasaki, Takashi; Yoshida, Tadayoshi; Takada, Chie; Tsujimura, Norio; Okada, Kazuhiko; Ishikawa, Hisashi

no journal, , 

no abstracts in English

Oral presentation

Development of the next-generation micro pixel chamber-based neutron imaging detector ($$mu$$ NID) for energy-resolved neutron imaging with high rate and high spatial resolution at the J-PARC/MLF

Parker, J. D.*; Harada, Masahide; Hiroi, Kosuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Oikawa, Kenichi; Segawa, Mariko; Shinohara, Takenao; Su, Y. H.; Takada, Atsushi*; et al.

no journal, , 

Oral presentation

A Micro pixel chamber based neutron imaging detector ($$mu$$ NID) with boron converter for energy-resolved neutron imaging at J-PARC

Parker, J. D.*; Shinohara, Takenao; Harada, Masahide; Hayashida, Hirotoshi*; Hiroi, Kosuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Oikawa, Kenichi; Segawa, Mariko; Su, Y. H.; et al.

no journal, , 

Oral presentation

Imaging test of the gamma-ray distribution in the reactor room using electron-tracking Compton camera (ETCC)

Sonoda, Shinya*; Takada, Atsushi*; Tanimori, Toru*; Tsuda, Masaya*; Tahara, Keisuke*; Kobayashi, Koichiro*; Tanigaki, Minoru*; Nagai, Haruyasu; Nakayama, Hiromasa; Satoh, Daiki

no journal, , 

We have developed an Electron Tracking Compton Camera (ETCC), which provides a well-defined Point Spread Function (PSF) by reconstructing a direction of each gamma as a point and realizes simultaneous measurement of brightness and spectrum of MeV gamma-rays. Here, we present the results of the gamma-imaging-spectroscopy with ETCC tested at the research reactor at the Institute for Integrated Radiation and Nuclear Science, Kyoto University.

Oral presentation

Observable counting rate limits of radiation detectors used in stack monitors

Imahashi, Atsushi; Hosomi, Kenji; Fujisawa, Makoto; Takada, Chie

no journal, , 

no abstracts in English

Oral presentation

Application of Electron Tracking Compton Camera (ETCC) in medical imaging

Sonoda, Shinya*; Nabetani, Akira*; Kimura, Hiroyuki*; Kabuki, Shigeto*; Takada, Atsushi*; Kubo, Hidetoshi*; Komura, Shotaro*; Sawano, Tatsuya*; Tanimori, Toru*; Matsuoka, Yoshihiro*; et al.

no journal, , 

We present the performance results using this new ETCC such as the imaging test using F-18 in point-like and rod-like phantoms with varying the intense of radiation. In addition, the measurementof Tc-95m which is produced by Japan Atomic Energy Agency was performed. Tc-95m emitsthe $$gamma$$-rays with the energy, 204, 583, and 835 keV, and then an image with multi-energies is examined. The position resolution achieves less than about 8 degrees from 10 degrees at 511 keV by this improvement. Further improvement of the angular resolution (position resolution) will be presented until 2015 spring. Also, we are developing the next ETCC by increasing the thickness of the scintillator from 1 rad. to 2 rad. and the gas pressure from 1 atm to 3 atm which improvethe detection efficiency by a factor of $$>$$ 5 at 511 keV. By these improvements, the imaging time of mouse is expected to be reduced from several hours with to $$<$$20 minutes for lots of kinds of RIs with the energy band from 0.1-2 MeV.

Oral presentation

Imaging test of the 3-D gamma-ray distribution in KUR reactor room using Electron-Tracking Compton Camera (ETCC)

Sonoda, Shinya*; Takada, Atsushi*; Tanimori, Toru*; Tsuda, Masaya*; Tahara, Keisuke*; Kobayashi, Koichiro*; Tanigaki, Minoru*; Taniguchi, Akihiro*; Nagai, Haruyasu; Nakayama, Hiromasa; et al.

no journal, , 

We have developed an Electron Tracking Compton Camera (ETCC), which provides a well-defined Point Spread Function (PSF) by reconstructing a direction of each gamma as a point and realizes simultaneous measurement of brightness and spectrum of MeV gamma-rays. Here, we present the results of the gamma-imaging-spectroscopy with ETCC tested at the research reactor at the Institute for Integrated Radiation and Nuclear Science, Kyoto University.

Oral presentation

Whole-body measurements for people living in Fukushima prefecture

Nakagawa, Takahiro; Takada, Chie; Kanai, Katsuta; Murayama, Takashi; Miyauchi, Hideaki; Suzuki, Takehiko; Sato, Yoshitaka; Ezaki, Hiroko; Imahashi, Atsushi; Isozaki, Kohei; et al.

no journal, , 

no abstracts in English

Oral presentation

Application of Electron Tracking Compton Camera (ETCC) in medical imaging

Sonoda, Shinya*; Nabeya, Akira*; Kimura, Hiroyuki*; Kabuki, Shigeto*; Takada, Atsushi*; Kubo, Hidetoshi*; Komura, Shotaro*; Tanimori, Toru*; Matsuoka, Yoshihiro*; Mizumura, Yoshitaka*; et al.

no journal, , 

SPECT and PET are widely used for medical imaging. However, radio isotopes available for SPECT and PET are limited. Under these circumstances, it is expected the appearance of the new $$gamma$$ imaging detector which can measure more various kinds of $$gamma$$-ray sources in order to develop new biomarkers using new radio isotopes. We set out to contribute to medical imaging technology by developing Electron-Tracking Compton Camera (ETCC) which can measure the various radioactive medicine.

12 (Records 1-12 displayed on this page)
  • 1