Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Preventing nuclear fuel material adhesion on glove box components using nanoparticle coating

Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Suzuki, Masahiro; Tachihara, Joji; Takato, Kiyoto; Okita, Takatoshi; Satone, Hiroshi*; Suzuki, Michitaka*

Mechanical Engineering Journal (Internet), 8(3), p.21-00022_1 - 21-00022_9, 2021/06

To reduce the hold-up of the nuclear fuel materials in the glove box and the external exposure dose, the technology of the MOX powder adhesion prevention by the nanoparticle coating to the acrylic panels of the glove box has been developed. The surface analysis by means of atomic force microscopy (AFM) showed that the acrylic test piece surface coated with nanoparticles had a higher root mean square roughness value than that non-coated with nanoparticles. Due to the formation of nano-sized tiny rugged surface, the nanoparticle coating reduced the minimum adhesion force between the UO$$_{2}$$ particles and the acrylic test piece surface with the smallest particle size of about 5 $$mu$$m where desorption was observed, by about one-tenth. Moreover, the nanoparticle coating reduced the amount of the MOX powder adhering to the acrylic test piece to about one-tenth. In this study, it was found that applying the nanoparticle coating to the acrylic panels of glove box can prevent the adhesion of nuclear fuel materials. This method is effective for reducing the hold-up of the nuclear fuel materials in the glove box, the external exposure dose and improving the visibility of the acrylic panels.

Journal Articles

Preventing nuclear fuel material adhesion on glove box components using nanoparticle coating

Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Suzuki, Masahiro; Tachihara, Joji; Takato, Kiyoto; Okita, Takatoshi; Satone, Hiroshi*; Suzuki, Michitaka*

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08

To reduce the hold-up of the nuclear fuel materials in the glove box and the external exposure dose, the technology of the MOX powder adhesion prevention by the nanoparticle coating to the acrylic panels of the glove box has been developed. Due to the formation of nano-sized tiny rugged surface, the nanoparticle coating reduced the minimum adhesion force between the UO$$_{2}$$ particles and the acrylic test piece surface with the smallest particle size of about 5 $$mu$$m where desorption was observed, by about one-tenth. Moreover, the nanoparticle coating reduced the amount of the MOX powder adhering to the acrylic test piece to about one-tenth. In this study, it was found that applying the nanoparticle coating to the acrylic panels of glove box can prevent the adhesion of nuclear fuel materials. This method is effective for reducing the hold-up of the nuclear fuel materials in the glove box, the external exposure dose and improving the visibility of the acrylic panels.

JAEA Reports

Engineering scale development test of MOX fuel fabrication technology to establish commercialized fast reactor fuel, 1; The O/M ratio preparation tests of sintered pellets

Takato, Kiyoto; Murakami, Tatsutoshi; Suzuki, Kiichi; Shibanuma, Kimikazu; Hatanaka, Nobuhiro; Yamaguchi, Bungo; Tobita, Yoshimasa; Shinozaki, Masaru; Iimura, Naoto; Okita, Takatoshi; et al.

JAEA-Technology 2013-026, 42 Pages, 2013/10

JAEA-Technology-2013-026.pdf:3.17MB

In order to cope with making a commercial fast reactor fuel burn-up higher, oxygen-to-metal (O/M) ratio in the fuel specification is designed to 1.95. As the test for the fabrication of such low O/M ratio pellets, two kinds of O/M ratio preparation tests of different reduction mechanism were done. In the first test, we evaluated the technology to prepare the O/M ratio low by annealing the sintered pellets in production scale. In addition, we know from past experience that O/M ratio of the sintered pellets can be reduced by residual carbon when the de-waxed pellets with high carbon content are sintered. Thus, in another test, the green pellets containing a large amount of organic additives were sintered and we evaluated the technology to produce the low O/M ratio sintered pellets by the reduction due to residual carbon. From the first test results, we found a tendency that the higher annealing temperature or the longer annealing time resulted in the lower O/M ratio. However, the amount of O/M ratio reduction was small and it is estimated that a substantial annealing time is necessary to prepare the O/M ratio to 1.95. It is considered that reducing O/M ratio by annealing was difficult because atmosphere gas containing oxygen released from pellets remained and the O/M ratio was changed to the value equilibrated with the gas having high oxygen potential. From another test results, it was confirmed that O/M ratio was reduced by the reduction due to residual carbon. We found that it was important to manage an oxygen potential of atmosphere gas in a sintering furnace low to reduce the O/M ratio effectively.

Oral presentation

Engineering scale development test of MOX fuel fabrication technology to establish commercialized fast reactor cycle, 2; Fabrication test of annular MOX pellets

Murakami, Tatsutoshi; Shibanuma, Kimikazu; Yamaguchi, Bungo; Takato, Kiyoto; Suzuki, Kiichi; Aono, Shigenori

no journal, , 

no abstracts in English

Oral presentation

Oral presentation

Oral presentation

Oral presentation

Development of automatic appearance inspection method using two-dimentional laserscanner for MOX pellets

Takato, Kiyoto; Suzuki, Kiichi; Iimura, Naoto; Okita, Takatoshi

no journal, , 

no abstracts in English

Oral presentation

Development of simplified pelletizing process for fast reactor MOX fuels and demonstration experiment, 3; Sintering and O/M ratio adjustment technology and gas flow analysis

Nishina, Masahiro; Takato, Kiyoto; Nakamichi, Shinya; Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Makino, Takayoshi; Okumura, Kazuyuki

no journal, , 

no abstracts in English

Oral presentation

Development of simplified pelletizing process for fast reactor MOX fuels and demonstration experiment, 2; Die wall lubrication technology with using tumbling granular

Takato, Kiyoto; Nishina, Masahiro; Tsuchimochi, Ryota; Hayashizaki, Kohei; Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Makino, Takayoshi; Okumura, Kazuyuki

no journal, , 

no abstracts in English

10 (Records 1-10 displayed on this page)
  • 1