Refine your search:     
Report No.
 - 
Search Results: Records 1-15 displayed on this page of 15
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Laser-driven proton generation with a thin-foil target

Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Ma, J.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.

NIFS-PROC-85, p.30 - 33, 2011/02

The experiment of proton generation is performed for developing the laser-driven ion source. We observe proton signals in the laser-plasma interaction by using a thin-foil target. To get higher energy protons the size of the preformed plasma is reduced by changing the laser contrast level. In the high-contrast laser pulse case the maximum energy of the protons generated at rear side of the target increases.

Journal Articles

Proton generation and terahertz radiation from a thin-foil target with a high-intensity laser

Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Ma, J.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.

Reza Kenkyu, 38(9), p.702 - 705, 2010/09

High-intensity laser and thin-foil interactions produce high-energy particles, hard X-ray, high-order harmonics, and terahertz (THz) radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical applications. In this study we have tested simultaneous generation of protons and THz radiation from a thin-foil target. We use a Ti:sapphire laser system (J-KAREN) at JAEA. A laser beam is focused by an off-axis parabolic mirror at the thin-foil target. We observed the high-energy proton in the rear side of the target and THz radiation in the reflected direction. Next, high energy protons are observed by reducing the size of preformed plasma.

Journal Articles

New method to measure the rise time of a fast pulse slicer for laser ion acceleration research

Mori, Michiaki; Yogo, Akifumi; Kiriyama, Hiromitsu; Nishiuchi, Mamiko; Ogura, Koichi; Orimo, Satoshi; Ma, J.*; Sagisaka, Akito; Kanazawa, Shuhei; Kondo, Shuji; et al.

IEEE Transactions on Plasma Science, 36(4), p.1872 - 1877, 2008/08

 Times Cited Count:7 Percentile:28.47(Physics, Fluids & Plasmas)

A dependence of cut-off proton kinetic energy on laser prepulse duration has been observed. ASE pedestal duration is controlled by a fast electro-optic pulse slicer where the risetime is estimated to be 130 ps. We demonstrate a new correlated spectral technique for determining this risetime using a stretched, frequency chirped pulse.

Journal Articles

Simultaneous proton and X-ray imaging with femtosecond intense laser driven plasma source

Orimo, Satoshi; Nishiuchi, Mamiko; Daido, Hiroyuki; Yogo, Akifumi; Ogura, Koichi; Sagisaka, Akito; Li, Z.*; Pirozhkov, A. S.; Mori, Michiaki; Kiriyama, Hiromitsu; et al.

Japanese Journal of Applied Physics, Part 1, 46(9A), p.5853 - 5858, 2007/09

 Times Cited Count:17 Percentile:54.99(Physics, Applied)

A laser-driven proton beam with a maximum energy of a few MeV is stably obtained using an ultra-short and high-intensity Titanium Sapphire laser. At the same time, keV X-ray is also generated at almost the same place where protons are emitted. Here, we show the successful demonstration of simultaneous proton and X-ray projection images of a test sample placed close to the source with a resolution of $$sim$$10$$mu$$m, which is determined from the source sizes. Although the experimental configuration is very simple, the simultaneity is better than a few hundreds of ps. A CR-39 track detector and imaging plate, which are placed as close as possible to the CR-39, are used as detectors of protons and X-ray. The technique is applicable to the precise observation of microstructures.

Journal Articles

Development of laser driven proton sources and their applications

Daido, Hiroyuki; Sagisaka, Akito; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Mori, Michiaki; Ma, J.-L.; Pirozhkov, A. S.; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.

Proceedings of 7th Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR 2007) (CD-ROM), p.77 - 79, 2007/00

We are developing a proton accelerator using an intense lasers with a focused intensity of $$>$$ 10$$^{17}$$ W/cm$$^{2}$$. To monitor proton energy spectra as well as plasma parameters at each laser shot, we are using real time detectors. The proton energy of MeV is stably obtained for applications.

Journal Articles

Intense femto-second laser-driven X-ray source coupled with multiple directional quantum beams for applications

Daido, Hiroyuki; Sagisaka, Akito; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Yogo, Akifumi; Mori, Michiaki; Li, Z.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.

X-Ray Lasers 2006; Springer Proceedings in Physics, Vol.115, p.595 - 605, 2007/00

At present, using ultra-short high intensity lasers at APRC, JAEA Kansai photon research institute, we are developing laser driven multiple quantum beams such as protons, X-rays, electrons and THz waves. These beams are perfectly synchronized with each other. The pulse duration of each beam is lass than a pico-second. They have sharp directionality with high brightness. If we properly combined these, we have new pump-probe techniques for various applications.

JAEA Reports

Conceptual study of test reactor for fuel irradiation/reactor performance research

Inabe, Teruo; ; ; Yonomoto, Taisuke; *; Akutsu, Cho; ; Iwamura, Takamichi; Okubo, Tsutomu; Osugi, Toshitaka; et al.

JAERI-M 93-106, 104 Pages, 1993/05

JAERI-M-93-106.pdf:2.77MB

no abstracts in English

JAEA Reports

Fundamental experiment on the concentric tube type closed circuit thermosyphon for JRR-3 cold neutron source, II

Kumai, Toshio; *; ; Akutsu, Cho; Takahashi, Hidetake

JAERI-M 89-114, 32 Pages, 1989/09

JAERI-M-89-114.pdf:1.16MB

no abstracts in English

JAEA Reports

Corrosion of aluminum in water

Kawasaki, Masayuki; Nomura, Sueo; Itami, Hiroharu; Kondo, Tatsuo; Kondo, Yasuko; Ito, Noboru; Akutsu, Cho

JAERI 1035, 42 Pages, 1963/03

JAERI-1035.pdf:3.24MB

no abstracts in English

Oral presentation

Simultaneous imaging with a proton beam and an X-ray driven by a fs-intense laser

Orimo, Satoshi; Yogo, Akifumi; Ogura, Koichi; Sagisaka, Akito; Mori, Michiaki; Kiriyama, Hiromitsu; Kondo, Shuji; Yamamoto, Yoichi*; Shimomura, Takuya*; Tanoue, Manabu*; et al.

no journal, , 

We are investigating an intense fs-laser driven MeV proton source using a thin foil, and its applications. Simultaneous imaging of a sample with a proton and an X-ray beams has been demonstrated by a ultra-short pulse higt intensity Ti:Sapphire laser systems at JAEA and GIST. For generating a short-pulse proton beams and X-rays, an intense laser pulse irradiates a tape targets. The p-polarized laser pulse with 50 mm diameter is focused onto the cupper tape target at 45 degree incident angle with focal length of 238 mm (F/4.8), giving an intensity on target of 3-9$$times$$10$$^{18}$$W/cm10$$^{2}$$. The cupper and polyimide tape was 5, 7.5 micron in thickness and 20 mm in width. The target system supplies a fresh surface to the focus spot at every shot. We obtained simultaneously the projection image of a Ni mesh pattern having a periodically structured pattern by the proton detected CR39 and X-rays detected on imaging plate.

Oral presentation

Energetic proton beam generation driven by J-KAREN JAEA 100 TW laser

Mori, Michiaki; Yogo, Akifumi; Orimo, Satoshi; Ogura, Koichi; Sagisaka, Akito; Nakamura, Shu*; Shirai, Toshiyuki*; Iwashita, Yoshihisa*; Noda, Akira*; Nemoto, Koshichi*; et al.

no journal, , 

no abstracts in English

Oral presentation

Energetic proton beam generation driven by J-KAREN laser

Mori, Michiaki; Yogo, Akifumi; Orimo, Satoshi; Ogura, Koichi; Sagisaka, Akito; Nakamura, Shu*; Shirai, Toshiyuki*; Iwashita, Yoshihisa*; Noda, Akira*; Oishi, Yuji*; et al.

no journal, , 

no abstracts in English

Oral presentation

Target position dependence of energy of proton generated with high intensity laser

Ogura, Koichi; Orimo, Satoshi; Sagisaka, Akito; Nishiuchi, Mamiko; Mori, Michiaki; Yogo, Akifumi; Kiriyama, Hiromitsu; Kanazawa, Shuhei; Kondo, Shuji; Nakai, Yoshiki; et al.

no journal, , 

When the high energy proton beam was generated by the high intensity laser system, the image of the plasma produced by the laser system was measured with an X-ray pinhole camera system. The proton beam, which has maximum energy, was generated in the vicinity of the target position where the image size of the plasma was the smallest.

Oral presentation

Applications of the high intensity short-pulse laser driven $$sim$$ MeV proton beam

Nishiuchi, Mamiko; Daito, Izuru; Ikegami, Masahiro; Mori, Michiaki; Orimo, Satoshi; Ogura, Koichi; Sagisaka, Akito; Yogo, Akifumi; Pirozhkov, A. S.; Ma, J.*; et al.

no journal, , 

A laser-driven proton beam with a maximum energy of a few MeV is stably obtained using an ultra-short and high-intensity Titanium Sapphire laser. As compared with the proton beam from the conventional accelerator, this proton beam exhibits peculiar characteristics, such as, more than 10$$^{13}$$ protons per bunch are produced within a short pulse duration of $$sim$$ps at a source, resulting in a very high peak current. It also exhibits a very low transverse emittance. The proton beam has a divergence angle of $$sim$$10 degrees and energy spread of $$sim$$100%. It accompanies electrons and X-rays, which is produced simultaneously. Making the best use of these peculiar characteristics, many possible applications of the laser-driven proton are proposed. In order to make practical laser-driven proton beam for the applications, we carry out series of experiments. We have successfully obtained simultaneous imaging of the target with proton and X-ray or proton and electron beams. In the course of practical use of the proton beam for specific applications, characteristics above should be optimized based on the variations of the applications. For example, in order to apply the laser-driven proton beam for the proton irradiation system, such as used in the medical or the industrial applications, we should obtain focused or parallel proton beam. One of our plans to alter the orbits of the laser-driven protons from the planer tape target is using permanent quadrupole magnets.

Oral presentation

Proton acceleration and laser-plasma interaction diagnostics with J-KAREN laser

Pirozhkov, A. S.; Mori, Michiaki; Yogo, Akifumi; Kiriyama, Hiromitsu; Ogura, Koichi; Sagisaka, Akito; Ma, J.*; Orimo, Satoshi; Nishiuchi, Mamiko; Sugiyama, Hironori*; et al.

no journal, , 

15 (Records 1-15 displayed on this page)
  • 1