Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 102

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effects of nozzle orifice shape on jet breakup and splashing during liquid jet impact onto a horizontal plate

Sun, G.*; Zhan, Y.*; Okawa, Tomio*; Aoyagi, Mitsuhiro; Uchibori, Akihiro; Okano, Yasushi

Experimental Thermal and Fluid Science, 151, p.111095_1 - 111095_15, 2024/02

 Times Cited Count:1 Percentile:0.01(Thermodynamics)

Journal Articles

Experiment and new analysis model simulating in-place cooling of a degraded core in severe accidents of sodium-cooled fast reactors

Imaizumi, Yuya; Aoyagi, Mitsuhiro; Kamiyama, Kenji; Matsuba, Kenichi; Akaev, A.*; Mikisha, A.*; Baklanov, V.*; Vurim, A.*

Annals of Nuclear Energy, 194, p.110107_1 - 110107_11, 2023/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Numerical simulation technologies for safety evaluation in plant lifecycle optimization method, ARKADIA for advanced reactors

Uchibori, Akihiro; Doda, Norihiro; Aoyagi, Mitsuhiro; Sonehara, Masateru; Sogabe, Joji; Okano, Yasushi; Takata, Takashi*; Tanaka, Masaaki; Enuma, Yasuhiro; Wakai, Takashi; et al.

Nuclear Engineering and Design, 413, p.112492_1 - 112492_10, 2023/11

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

The ARKAIDA has been developed to realize automatic optimization of plant design from safety evaluation for the advanced reactors represented by a sodium-cooled fast reactor. ARKADIA-Design offers functions to support design optimization both in normal operating conditions and design basis events. The multi-level simulation approach by the coupled analysis such as neutronics, core deformation, core thermal hydraulics was developed as one of the main technologies. On the other hand, ARKAIDA-Safety aims for safety evaluation considering severe accidents. As a key technology, the numerical methods for in- and ex-vessel coupled phenomena during severe accidents in sodium-cooled fast reactors were tested through a hypothetical severe accident event. Improvement of the ex-vessel model and development of the AI technology to find best design solution have been started.

Journal Articles

Development of the ex-vessel modules for the integrated SFR safety analysis code SPECTRA

Aoyagi, Mitsuhiro; Makino, Toru*; Oki, Hiroshi*; Uchibori, Akihiro; Okano, Yasushi

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

Journal Articles

Experimental study on the breakup of liquid jet discharged from a nozzle with sudden contraction

Sun, G.*; Okawa, Tomio*; Aoyagi, Mitsuhiro; Uchibori, Akihiro; Okano, Yasushi

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 8 Pages, 2023/05

When liquid sodium leaks as a liquid jet from piping in a sodium-cooled fast reactor, the jet impinges with structures to produce splashing droplets which can cause significant combustion. According to previous studies on circular nozzles, the amount of splash is affected by the state of the jet at the moment of impingement. In the present work, a nozzle with a sudden contraction in the cross-sectional area was designed to reproduce a supposed pipe leakage, and the breakup behavior of jet discharged from this nozzle was observed. The result shows that the breakup of jet was accelerated until the jet transformed into a particularly stable state when the jet velocity exceeded a certain value. Once the jet has transformed, it will not turn back unless turning down the flow rate to a very low value. The stable jet after the transformation has a longer breakup length than that before the transformation in the same flow rate.

Journal Articles

Sodium fire collaborative study progress; CNWG fiscal year 2022

Louie, D. L. Y.*; Aoyagi, Mitsuhiro

SAND2022-14235 (Internet), 29 Pages, 2022/10

This report discusses the progress on the collaboration between Sandia National Laboratories (SNL) and Japan Atomic Energy Agency (JAEA) on the sodium fire research in fiscal year 2022. First, the current sodium pool fire model in MELCOR is discussed. The associated sodium fire input requirements are also presented. The theoretical pool fire model improvement developed at SNL is discussed. A control function model has been developed from this improvement. Then, the validation study of the sodium pool fire model in MELCOR is described. To validate this pool fire model with the enhancement, JAEA F7-1 and F7-2 sodium pool fire experiments are used. The results of the calculation are discussed as well as suggestions for further model improvement. Finally, recommendations are made for new MELCOR simulations for next fiscal year, 2023.

Journal Articles

Development of ARKADIA-Safety for severe accident evaluation of sodium-cooled fast reactors

Aoyagi, Mitsuhiro; Sonehara, Masateru; Ishida, Shinya; Uchibori, Akihiro; Kawada, Kenichi; Okano, Yasushi; Takata, Takashi

Proceedings of Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors (Internet), 3 Pages, 2022/09

Journal Articles

Validation study of sodium pool fire modeling efforts in MELCOR and SPHINCS codes

Louie, D. L. Y.*; Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takashi; Luxat, D. L.*

Proceedings of Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors (Internet), 6 Pages, 2022/09

Journal Articles

Experiment study on the effect of nozzle shape on liquid jet breakup

Sun, G.*; Zhan, Y.*; Okawa, Tomio*; Aoyagi, Mitsuhiro; Uchibori, Akihiro; Okano, Yasushi

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 6 Pages, 2022/08

When a liquid sodium leakage accident occurs in a sodium-cooled fast reactor, the injected sodium collides with structures to produce splashing droplets, which can result in a violent combustion. According to previous studies on circular nozzles, the amount of splash is affected by the state of the jet at the moment of impact. However, the outlet shape of damaged area is hardly to be circular; and meanwhile it influences the flow pattern of jet a lot. Considering about this, in the present work, high-speed cameras were used to observe the jet discharged from oval nozzles vertically downward to investigate the falling process of the jet. The result shows that surface wave appears on the jet and within a certain range of flow velocity it can be observed obviously, meanwhile accelerate the breakup of jet.

JAEA Reports

Effect of repairing refractory material of main reactor in steam reforming system

Kijima, Jun; Koyama, Hayato; Owada, Mitsuhiro; Hagiwara, Masayoshi; Aoyagi, Yoshitaka

JAEA-Technology 2022-012, 14 Pages, 2022/07

JAEA-Technology-2022-012.pdf:1.51MB

Steam reforming system has been developed for the treatment of organic wastes which are not suitable materials (halogenated oil) for the incineration due to generation of corrosive compounds and plugging materials. The refractory material is cast inside the main reactor, which is a part of the steam reforming system. Since the surface of this refractory material has deteriorated over time, the main reactor was replaced. If the refractory material surface of the used main reactor can be repaired, the used main reactor can be reused as a spare. The refractory material surface was repaired using two types of repair materials ("S" and "P"). Combustion tests were conducted on samples simulating organic wastes to evaluate each repair material. As a result of the combustion test, it was concluded that the repair of the main reactor was possible to use the repair material "P" because no cracks or flakes were observed.

Journal Articles

Experiment and analysis for development of evaluation method for cooling of residual core materials in core disruptive accidents of sodium-cooled fast reactors

Imaizumi, Yuya; Aoyagi, Mitsuhiro; Kamiyama, Kenji; Matsuba, Kenichi; Akayev, A. S.*; Mikisha, A. V.*; Baklanov, V. V.*; Vurim, A. D.*

Dai-26-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2022/07

The cooling of the residual core materials after the fuel discharge from the SFR core in the core disruptive accident can significantly affect the distribution fraction of the core materials which is an important factor for the in-vessel retention (IVR). The cooling of the residual core materials is called "in-place cooling". For the evaluation of the in-place cooling, behavior in a SFR core was simulated by SIMMER-III, and method of phenomena identification and ranking table (PIRT) was applied based on the analysis result. Experiment which focuses on the thermal-hydraulic phenomena which were extracted by the PIRT was conducted in the framework of EAGLE-3 project. Continuous oscillation of sodium level which can occur in the phase of in-place cooling of SFRs was observed in the experiment, and analysis by the SIMMER-III was conducted. By investigation of the analysis result, difference between the experiment and analysis results was revealed to be due to remaining and occupation of non-condensable gas above the sodium level which would be unrealistic in the experiment. Gas mixture model between non-condensable gas and sodium vapor was developed to solve this problem, and coincidence between experiment and analysis results was largely improved by this new model.

Journal Articles

MELCOR validation study on sodium pool fire model with comparison to SPHINCS

Louie, D. L. Y.*; Aoyagi, Mitsuhiro

Proceedings of International Topical Meetings on Advances in Thermal Hydraulics (ATH 2022) (Internet), p.316 - 329, 2022/06

Journal Articles

Development of integrated severe accident analysis code, SPECTRA for sodium-cooled fast reactor

Uchibori, Akihiro; Sonehara, Masateru; Aoyagi, Mitsuhiro; Takata, Takashi*; Ohshima, Hiroyuki

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 9 Pages, 2022/04

A new computational code, SPECTRA, has been developed for integrated analysis of in- and ex-vessel phenomena during severe accidents in sodium-cooled fast reactors. The in-vessel thermal hydraulics module includes coupled analytical models for multidimensional multifluid model considering compressibility and relocation of a molten core. A lumped mass model is employed for computing behavior of ex-vessel compressible multicomponent gas including aerosols. This model is coupled with the models for ex-vessel phenomena such as sodium fire. Loss of reactor level event starting from leakage of sodium coolant was computed. Basic capability to evaluate severe accident progress was demonstrated through this analysis.

Journal Articles

Development of the sodium pool and floor concrete module for the integrated SFR safety analysis code, SPECTRA

Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takashi

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 13 Pages, 2022/03

Journal Articles

Sodium fire collaborative study progress; CNWG fiscal year 2021

Louie, D. L. Y.*; Aoyagi, Mitsuhiro

SAND2021-15469 (Internet), 45 Pages, 2021/12

This report discusses the progress on the collaboration between Sandia National Laboratories (SNL) and Japan Atomic Energy Agency (JAEA) on the sodium fire research in fiscal year 2021. First, the current sodium pool fire model in MELCOR is discussed. The associated sodium fire input requirements are also presented. The theoretical pool fire model improvement developed at SNL is discussed. A control function model has been developed from this improvement. Then, the validation study of the sodium pool fire model in MELCOR is described. To validate this pool fire model with the enhancement, JAEA F7-1 and F7-2 sodium pool fire experiments are used. The results of the calculation are discussed as well as suggestions for further model improvement. Finally, recommendations are made for new MELCOR simulations for next fiscal year, 2021.

Journal Articles

Droplet generation during spray impact onto a downward-facing solid surface

Zhan, Y.*; Sun, G.*; Okawa, Tomio*; Aoyagi, Mitsuhiro; Takata, Takashi

Experimental Thermal and Fluid Science, 126, p.110402_1 - 110402_8, 2021/08

 Times Cited Count:6 Percentile:59.92(Thermodynamics)

Journal Articles

Numerical assesment of sodium fire incident

Takata, Takashi; Aoyagi, Mitsuhiro; Sonehara, Masateru

IAEA-TECDOC-1972, p.224 - 234, 2021/08

Sodium fire is one of the key issues for plant safety of sodium-cooled fast reactor (SFR) regardless of its size. In general, a concrete structure, which includes free and bonging water inside, is used in a reactor building. Accordingly, water vapor will release from the concrete during sodium fire incident due to temperature increase resulting in a hydrogengeneration even in a dry air condition. The probability of hydrogen generation will increase in accordance with a decrease of a dimension of compartment that corresponds to a small and medium sized or modular reactor (SMR). A numerical investigation of a small leakage sodium pool fire has been carried out by changing a dimension of compartment. Furthermore, numerical challenges to enhance a prediction accuracy of hydrogen generation during sodium fire has also been discussed in the paper.

Journal Articles

Numerical modeling of radiation heat transfer from combusting droplets for a sodium fire analysis

Aoyagi, Mitsuhiro; Takata, Takashi; Uno, Masayoshi*

Nuclear Engineering and Design, 380, p.111258_1 - 111258_11, 2021/08

 Times Cited Count:2 Percentile:31.78(Nuclear Science & Technology)

Journal Articles

Study of recent sodium pool fire model improvements for MELCOR code

Aoyagi, Mitsuhiro; Louie, D. L. Y.*; Uchibori, Akihiro; Takata, Takashi; Luxat, D.*

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 10 Pages, 2021/08

Journal Articles

Development of the analytical method using DPD simulation for molten fuel behaviour in a sodium-cooled fast reactor

Sonehara, Masateru; Uchibori, Akihiro; Aoyagi, Mitsuhiro; Kawada, Kenichi; Takata, Takashi; Ohshima, Hiroyuki

Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 3 Pages, 2021/07

In sodium-cooled fast reactors (SFRs), it has been pointed out that molten fuel may be discharged from the core during a severe accident (SA) accompanied by core damage, and may solidify into debri particles with diameters ranging from several millimeters to several hundred micrometers due to interaction with the sodium coolant and accumulate at the bottom of the reactor vessel. Therefore, it is necessary to understand the behavior of such debri particles appropriately to evaluate the SA event progression. To meet these requirements, a molten fuel behavior analysis code using dissipative particle dynamics (DPD), a kind of particle method, has been developed as a part of the SPECTRA code, tool for consistent analysis of in-vessel and ex-vessel events in sodium fast reactor accidents. In this study, it was found that the new analyses code can reproduce sedimentation behavior of particles by adding a new stress term in the shear direction.

102 (Records 1-20 displayed on this page)