Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Inter-code comparison benchmark between DINA and TSC for ITER disruption modelling

Miyamoto, Seiji*; Isayama, Akihiko; Bandyopadhyay, I.*; Jardin, S. C.*; Khayrutdinov, R. R.*; Lukash, V.*; Kusama, Yoshinori; Sugihara, Masayoshi*

Nuclear Fusion, 54(8), p.083002_1 - 083002_19, 2014/08

 Times Cited Count:32 Percentile:82.75(Physics, Fluids & Plasmas)

Two well-established simulation codes, DINA and TSC, are compared with each other using benchmark scenarios in order to validate the ITER 2D disruption modelling by those codes. Although the simulation models employed in those two codes ought to be equivalent in the resistive time scale, it has long been unanswered whether the one of the two codes is really able to reproduce the other result correctly, since a large number of code-wise differences render the comparison task exceedingly complicated. In this paper, it is demonstrated that after simulations are set up accounting for the model differences, in general, a good agreement is attained on a notable level, corroborating the correctness of the code results. When the halo current generation and its poloidal path in the first wall are included, however, the situation is more complicated. Because of the surface averaged treatment of the magnetic field (current density) diffusion equation, DINA can only approximately handle the poloidal electric currents in the first wall that cross field lines. Validation is carried out for DINA simulations of halo current generation by comparing with TSC simulations, where the treatment of halo current dynamics is more justifiable. The particularity of each code is depicted and the consequence in ITER disruption prediction is discussed.

Journal Articles

TSC modelling of major disruption and VDE events in NSTX and ASDEX-upgrade and predictions for ITER

Bandyopadhyay, I.*; Gerhardt, S.*; Jardin, S.*; Sayer, R. O.*; Nakamura, Yukiharu*; Miyamoto, Seiji; Pautasso, G.*; Sugihara, Masayoshi*; ASDEX Upgrade Team*; NSTX Team*

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10

Vertical Displacement Events (VDEs) and Major Disruptions (MDs) of the plasma current will induce large electromagnetic forces on the ITER machine. Estimation of these forces based on accurate modeling of these events is necessary for a robust ITER design. Originally the estimates for electromagnetic forces on ITER were carried out with the help of DINA simulations. However, since simulations of these events may be significantly influenced by model assumptions of a given code it is important to validate the results against other codes like TSC, as also benchmark and update the codes with experimental data. In this paper, we present TSC modeling of the VDE and MD events in NSTX and ASDEX-U devices, which help in improving and validating the models used in the code. The predictive modeling results for ITER with the updated code, including the force predictions, are also presented.

2 (Records 1-2 displayed on this page)
  • 1