Refine your search:     
Report No.
 - 
Search Results: Records 1-15 displayed on this page of 15
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Third international challenge to model the medium- to long-range transport of radioxenon to four Comprehensive Nuclear-Test-Ban Treaty monitoring stations

Maurer, C.*; Galmarini, S.*; Solazzo, E.*; Ku$'s$mierczyk-Michulec, J.*; Bar$'e$, J.*; Kalinowski, M.*; Schoeppner, M.*; Bourgouin, P.*; Crawford, A.*; Stein, A.*; et al.

Journal of Environmental Radioactivity, 255, p.106968_1 - 106968_27, 2022/12

 Times Cited Count:2 Percentile:14.8(Environmental Sciences)

After performing multi-model exercises in 2015 and 2016, a comprehensive Xe-133 atmospheric transport modeling challenge was organized in 2019. For evaluation measured samples for the same time frame were gathered from four International Monitoring System stations located in Europe and North America with overall considerable influence of IRE and/or CNL emissions. As a lesion learnt from the 2nd ATM-Challenge participants were prompted to work with controlled and harmonized model set ups to make runs more comparable, but also to increase diversity. Effects of transport errors, not properly characterized remaining emitters and long IMS sampling times (12 to 24 hours) undoubtedly interfere with the effect of high-quality IRE and CNL stack data. An ensemble based on a few arbitrary submissions is good enough to forecast the Xe-133 background at the stations investigated. The effective ensemble size is below five.

Journal Articles

International challenge to model the long-range transport of radioxenon released from medical isotope production to six Comprehensive Nuclear-Test-Ban Treaty monitoring stations

Maurer, C.*; Bar$'e$, J.*; Kusmierczyk-Michulec, J.*; Crawford, A.*; Eslinger, P. W.*; Seibert, P.*; Orr, B.*; Philipp, A.*; Ross, O.*; Generoso, S.*; et al.

Journal of Environmental Radioactivity, 192, p.667 - 686, 2018/12

 Times Cited Count:25 Percentile:65.58(Environmental Sciences)

It is very important to understand the impact for CTBT stations caused by radioxenon emitted from medical isotope production facilities for detection of underground nuclear tests. Predictions of the impact on six CTBT radionuclide stations in the Southern Hemisphere of radioxenon emitted from the medical isotope production facility in Australia were carried out by participants from ten nations using ATM (Atmospheric Transport Modeling) based on the emission data of radioxenon from this facility, as part of study on impact of radioxenon emitted from medical isotope production facilities on CTBT radionuclide stations.

Journal Articles

Mechanisms of oxygen reduction reactions for carbon alloy catalysts via first principles molecular dynamics

Ikeda, Takashi; Hou, Z.*; Chai, G.-L.*; Terakura, Kiyoyuki*

Hyomen Kagaku, 36(7), p.345 - 350, 2015/07

Carbon alloy catalysts (CACs) are one of promising candidates for platinum-substitute cathode catalysts for polymer electrolyte fuel cells. We have investigated possible mechanisms of oxygen reduction reactions (ORRs) for CACs via first-principles-based molecular dynamics simulations. In this contribution, we review possible ORRs at likely catalytic sites of CACs suggested from our simulations.

Journal Articles

Active sites and mechanisms for oxygen reduction reaction on nitrogen-doped carbon alloy catalysts; Stone-Wales defect and curvature effect

Chai, G.-L.*; Hou, Z.*; Shu, D.-J.*; Ikeda, Takashi; Terakura, Kiyoyuki*

Journal of the American Chemical Society, 136(39), p.13629 - 13640, 2014/10

 Times Cited Count:252 Percentile:97.75(Chemistry, Multidisciplinary)

Carbon alloy catalysts (CACs) are promising catalysts for oxygen reduction reaction (ORR) to substitute Pt. However, despite extensive studies on CACs the reaction sites and mechanisms for ORR are still in controversy. Herein, we present rather general consideration on possible ORR mechanisms for various structures in nitrogen doped CACs based on the first principles calculations. Our study indicates that only a particular structure of a nitrogen pair doped Stone-Wales defect provides a good active site. The ORR activity of this structure can be tuned by the curvature around the active site, which makes its limiting potential approaching the maximum limiting potential (0.80 V) in the volcano plot for the ORR activity of CACs. The calculated results can be compared with the recent experimental ones of the half wave potential for CAC systems that range from 0.60 V to 0.80 V in the reversible-hydrogen-electrode scale.

Journal Articles

Possible oxygen reduction reactions for graphene edges from first principles

Ikeda, Takashi; Hou, Z.*; Chai, G.-L.*; Terakura, Kiyoyuki*

Journal of Physical Chemistry C, 118(31), p.17616 - 17625, 2014/08

 Times Cited Count:50 Percentile:80.77(Chemistry, Physical)

N-doped carbon-based nanomaterials are attracting a great interest as promising Pt-free electrode catalysts for polymer electrolyte fuel cells (PEFCs). In this computational study, we demonstrate that N-doped graphene edges can exhibit enhanced catalytic activity toward oxygen reduction reactions by controlling their electron-donating and -withdrawing abilities, and basicity, resulting in higher selectivity of 4e$$^{-}$$ reduction via inner and outer sphere electron transfer at edges in acidic conditions, respectively. Our simulations also show that 2e$$^{-}$$ reduction occurs selectively in the presence of pyridinic N next to carbonyl O at zigzag edges. This study thus rationalizes the roles of doped N in graphenelike materials for oxygen reduction reactions.

Journal Articles

Interplay between oxidized monovacancy and nitrogen doping in graphene

Hou, Z.*; Shu, D.-J.*; Chai, G.-L.*; Ikeda, Takashi; Terakura, Kiyoyuki*

Journal of Physical Chemistry C, 118(34), p.19795 - 19805, 2014/08

 Times Cited Count:11 Percentile:35.81(Chemistry, Physical)

In most of the N-doped graphene which attracts strong attention in the context of precious-metal free catalysts and nanoelectronics, the oxygen content is generally higher than or at least comparable to the nitrogen content. We perform density functional theory calculations to study the interplay of oxidized monovacancies and the nitrogen doping, motivated by the fact that MV is more frequently observed and more chemically active than divacancy and Stone-Wales defect. We determine the phase diagrams of un-doped and nitrogen-doped oxidized MVs as a function of temperature and partial pressure of O$$_{2}$$ and H$$_{2}$$ gases. The modification of the electronic structure of MV by oxidation and N doping is studied. Our results show that the ether group is a common component in stable configurations of oxidized MVs. Most of the stable configurations of oxidized MVs do not induce any carriers.

Journal Articles

Challenge to ultra-trace analytical techniques of nuclear materials in environmental samples for safeguards at JAERI; Methodologies for physical and chemical form estimation

Usuda, Shigekazu; Yasuda, Kenichiro; Kokubu, Yoko; Esaka, Fumitaka; Lee, C. G.; Magara, Masaaki; Sakurai, Satoshi; Watanabe, Kazuo; Hirayama, Fumio; Fukuyama, Hiroyasu; et al.

International Journal of Environmental Analytical Chemistry, 86(9), p.663 - 675, 2006/08

 Times Cited Count:14 Percentile:40.18(Chemistry, Analytical)

The IAEA introduced the environmental sample analysis method, as a powerful tool to detect undeclared nuclear activities, into strengthened safeguards system. The principle of the method is that nuclear signatures can be evidenced if trace amount of nuclear materials in environmental samples taken from inside and outside of nuclear facilities are accurately analyzed. Currently, isotope ratios of uranium and plutonium in "swipe" samples are measured, which are collected in nuclear facilities. In future, the subject of environmental sample analysis will expand to soil, sediment, vegetation, water and airborne dust taken from outside of the nuclear facilities. If physical and chemical form of the nuclear materials is identified, we may estimate their origin, treatment process and migration behavior. This paper deals with the developed analytical techniques for the safeguards environmental samples, the current R&D on techniques related to estimation of the physical and chemical form, and possible analytical methodologies applicable to ultra-trace amounts of nuclear materials.

Journal Articles

R&D on safeguards environmental sample analysis at JAERI

Sakurai, Satoshi; Magara, Masaaki; Usuda, Shigekazu; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Kono, Nobuaki; Inagawa, Jun; et al.

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

no abstracts in English

Journal Articles

Development of analytical techniques for safeguards environmental samples

Magara, Masaaki; Usuda, Shigekazu; Sakurai, Satoshi; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Kono, Nobuaki; Inagawa, Jun; et al.

Dai-26-Kai Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Nenji Taikai Rombunshu, p.157 - 164, 2005/00

JAERI has conducted the analysis of domestic and the IAEA samples. JAERI is developing the analytical techniques to improve the analytical ability for the safeguards environmental samples. For bulk analysis, study is focused on the improvement of reliability of isotope ratio measurements by ICP-MS. New chemical separation techniques are under development and a desolvation module is introduced to reduce the polyatomic interferences. In particle analysis, the sample preparation procedure for SIMS method is modified to measure the $$^{234}$$U/$$^{238}$$U and $$^{236}$$U/$$^{238}$$U ratios for individual particles. We are also developing fission track-TIMS method to measure uranium isotope ratios in particles of sub-micrometer size. A screening instrument of X-ray fluorescent analysis is equipped to measure elemental distribution on a swipe surface.

Journal Articles

Current status and newly introduced analytical techniques for safeguards environmental samples at JAERI

Magara, Masaaki; Usuda, Shigekazu; Sakurai, Satoshi; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Kono, Nobuaki; Inagawa, Jun; et al.

Proceedings of INMM 46th Annual Meeting (CD-ROM), 8 Pages, 2005/00

JAERI has been developing analytical techniques for ultra-trace amounts of nuclear materials in the environmental samples in order to contribute to the strengthened safeguards system. Development of essential techniques for bulk and particle analysis of the environmental swipe sample has been established as an ultra-trace analytical method of uranium and plutonium. In January 2003, JAERI was qualified as a member of the IAEA network analytical laboratories for environmental samples. Since then, JAERI has conducted the analysis of domestic and the IAEA samples. From Japanese fiscal year 2003, the second phase of the project was started for the development of advanced techniques, such as analyzing minor actinides and fission products as well as uranium and plutonium, particle analysis using fission-track technique, more efficient particle analysis using ICP-TOFMS and screening by X-ray fluorescent analysis. This paper deals with the progress in the development of the new techniques, applications and future perspective.

Oral presentation

Nitrogen-doping in graphene and its structural defects; Possibilities as catalytic sites of oxygen reduction reactions

Ikeda, Takashi; Chai, G.*; Hou, Z.*; Shu, D.*; Terakura, Kiyoyuki*

no journal, , 

no abstracts in English

Oral presentation

Possibilities of nitrogen-doped defects in graphene as catalytic sites of oxygen reduction reactions

Ikeda, Takashi; Chai, G.*; Hou, Z.*; Terakura, Kiyoyuki*

no journal, , 

Polymer electrolyte fuel cells are one of the most promising power sources. However, their practical use continues to be hindered by the prohibitive cost of Pt-based catalysts required to facilitate electrode reactions at operating temperatures of 80$$^{circ}$$C. Recently, a large number of groups have reported significantly high ORR activities of sp$$^{2}$$ carbon-based materials doped with light elements such as N, B, S, etc., thus leading to much debate on the role of the doped light elements in the ORR activity. In this computational study, we inspect possible oxygen adsorption and reduction processes on various models of N-doped defective graphene using FPMD simulations. The dynamics of an O$$^{2}$$ molecule solvated in water along with energetic considerations, indicates that the N doping in defective graphenes can enhance efficiently their catalytic activity depending on the detailed structure of defects as well as the position of N dopants.

Oral presentation

Study on mechanisms of oxygen reduction reactions for carbon alloy catalysts via first principles molecular dynamics, 2

Ikeda, Takashi; Chai, G.*; Hou, Z.*; Terakura, Kiyoyuki*

no journal, , 

no abstracts in English

Oral presentation

Study on mechanisms of oxygen reduction reactions for carbon alloy catalysts via first principles molecular dynamics, 3

Ikeda, Takashi; Chai, G.*; Hou, Z.*; Terakura, Kiyoyuki*

no journal, , 

Recently, carbon-based nanomaterials doped with heteroatoms such as N are attracting a great interest as promising Pt-free electrode catalysts for polymer electrolyte fuel cells. For further enhancing their catalytic activity it is of crucial importance to identify catalytic sites of carbon-based materials and to elucidate reaction mechanisms at atomistic level. In this computational study, we inspect possible oxygen adsorption and reduction processes on various models of N-doped graphene using first principles-based molecular dynamics simulations. In this talk we summarize possible paths of oxygen reduction reaction and catalytic activity for N-doped carbon alloy catalysts suggested from our simulations.

Oral presentation

Mechanisms of oxygen reduction reactions for carbon alloy catalysts via first principles molecular dynamics

Ikeda, Takashi; Hou, Z.*; Chai, G.-L.*; Terakura, Kiyoyuki*

no journal, , 

no abstracts in English

15 (Records 1-15 displayed on this page)
  • 1