Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Integrated modelling of a JET type-I ELMy H-mode pulse and predictions for ITER-like wall scenarios

Wiesen, S.*; Brezinsek, S.*; J$"a$rvinen, A.*; Eich, T.*; Fundamenski, W.*; Huber, A.*; Parail, V.*; Corrigan, G.*; Hayashi, Nobuhiko; JET-EFDA Contributors*

Plasma Physics and Controlled Fusion, 53(12), p.124039_1 - 124039_12, 2011/12

 Times Cited Count:22 Percentile:67.5(Physics, Fluids & Plasmas)

Journal Articles

Discrepancy between modelled and measured radial electric fields in the scrape-off layer of divertor tokamaks; A Challenge for 2D fluid codes?

Chankin, A. V.*; Coster, D. P.*; Asakura, Nobuyuki; Bonnin, X.*; Conway, G. D.*; Corrigan, G.*; Erents, S. K.*; Fundamenski, W.*; Horacek, J.*; Kallenbach, A.*; et al.

Nuclear Fusion, 47(5), p.479 - 489, 2007/05

 Times Cited Count:34 Percentile:73.8(Physics, Fluids & Plasmas)

Radial electric field in known to be one of the drivers for the parallel ion flow in the SOL. It contributes to the ion Pfirsch-Schluter flow and determines the return parallel flow compensating poloidal ExB drift. It was established recently that 2D fluid codes EDGE2D and SOLPS underestimate the predicted Er in the SOL compared to experimentally measured values. The present work demonstrates that this underestimate can be responsible for the large discrepancy between measured and simulated parallel ion flows in the SOL. Provided radial electric field was modelled correctly by the codes, an increase in the predicted Mach number of the parallel ion flow by up to a factor 3 for the JET could be expected. This would entirely eliminate the difference between the experimentally determined part of the ion flow that depends on the toroidal field direction, and the modelled ion flow attributed to drifts. Discrepancy between measured and simulated flows in ASDEX-Upgrade was also reduced.

Journal Articles

Theoretical analysis and predictive modelling of ELMs mitigation by enhanced toroidal ripple and ergodic magnetic field

Parail, V. V.*; Evans, T. E.*; Johnson, T.*; L$"o$nnroth, J.*; Oyama, Naoyuki; Saibene, G.*; Sartori, R.*; Salmi, A.*; de Vries, P.*; Becoulet, M.*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

Ripple-induced transport and externally driven resonance magnetic perturbations (RMP) near the separatrix are considered as prospective methods of ELM mitigation in present day tokamaks and ITER. Although these methods rely on different physics to generate extra transport, the influence of this transport on plasma dynamics and ELM mitigation is either similar or supplementary. The results of extensive theoretical analysis of the underlying physics processes behind transport induced by ripple and RMP is presented together with predictive transport modelling. Comparison with experiments on present-day tokamaks is given.

3 (Records 1-3 displayed on this page)
  • 1