Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Perspective of negative triangularity tokamak as fusion energy system

Kikuchi, Mitsuru; Medvedev, S.*; Takizuka, Tomonori*; Fasoli, A.*; Wu, Y.*; Diamond, P. H.*; Duan, X.*; Kishimoto, Yasuaki*; Hanada, Kazuaki*; 41 of others*

Europhysics Conference Abstracts (Internet), 39E, p.P4.179_1 - P4.179_4, 2015/06

Power and particle control in fusion reactor is quite a challenge and we have studied the negative triangularity tokamak (NTT) as an innovative concept to reduce the transient ELM heat load and the quasi steady-state heat load. A double-null NTT is stable to ideal MHD modes for a reactor relevant bN $$>$$ 3 while it is a magnetic hill configuration. In this paper, we report the configuration study of single-null NTT and its ideal MHD stability.

Journal Articles

A Possible breakthrough of power handling by plasma shaping in tokamak

Kikuchi, Mitsuru; Fasoli, A.*; Takizuka, Tomonori*; Diamond, P. H.*; Medvedev, S.*; Wu, Y.*; Duan, X.*; Kishimoto, Yasuaki*; Hanada, Kazuaki*; Pueschel, M. J.*; et al.

Proceedings of 8th IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices (CD-ROM), 20 Pages, 2015/05

The standard D shaped H-mode operation showed excellent plasma confinement ut has important issues of transient and steady state heat flux. To solbe this issues, we proposed new scenario using plasma shaping as one of possible scenario of future tokamak reactor.

Journal Articles

Dynamics of stimulated L$$rightarrow$$H transitions

Miki, Kazuhiro; Diamond, P. H.*; Hahn, S.-H.*; Xiao, W. W.*; G$"u$rcan, $"O$. D.*; Tynan, G. R.*

Physics of Plasmas, 20(8), p.082304_1 - 082304_11, 2013/08

 Times Cited Count:14 Percentile:53.13(Physics, Fluids & Plasmas)

We report on model studies of stimulated L$$rightarrow$$H transitions. These studies use a reduced mesoscale model. Model studies reveal that L$$rightarrow$$H transition can be triggered by particle injection into a subcritical state. Particle injection changes edge mean flow shear via changes of density and temperature gradients. The change of edge mean flow shear is critical to turbulence collapse and the subsequent stimulated transition. For low ambient heating, strong injection is predicted to trigger a transient turbulence collapse. Repetitive injection at a period less than the lifetime of the collapsed state can thus maintain the turbulence collapse. The total number of injected particles required is much smaller than that required for a transition by gas puffing. We thus show that internal injection is more efficient than gas puffing of comparable strength. We also observe that zonal flows do not play a critical role in stimulated transitions.

Journal Articles

Spatio-temporal evolution of the L$$rightarrow$$H and H$$rightarrow$$L transitions

Miki, Kazuhiro; Diamond, P. H.*; Fedorczak, N.*; G$"u$rcan, $"O$. D.*; Malkov, M.*; Lee, C.*; Kosuga, Yusuke*; Tynan, G. R.*; Xu, G. S.*; Estrada, T.*; et al.

Nuclear Fusion, 53(7), p.073044_1 - 073044_10, 2013/07

 Times Cited Count:24 Percentile:72.51(Physics, Fluids & Plasmas)

Understanding the L$$rightarrow$$H and H$$rightarrow$$L transitions is crucial to successful ITER operation. In this paper we present novel theoretical and modelling study results on the spatio-temporal dynamics of the transition. We place a special emphasis on the role of zonal flows and the micro$$rightarrow$$macro connection between dynamics and the power threshold dependences. The model studied evolves five coupled fields in time and one space dimension, in simplified geometry. The content of this paper is (a) the model fundamentals and the space-time evolution during the L$$rightarrow$$I$$rightarrow$$H transition, (b) the physics origin of the well-known $$nabla$$ B-drift asymmetry in power threshold, (c) the role of heat avalanches in the intrinsic variability of the L$$rightarrow$$H transition, (d) the dynamics of the H$$rightarrow$$L back transition and the physics of hysteresis.

Journal Articles

Spatio-temporal evolution of the H$$rightarrow$$L back transition

Miki, Kazuhiro; Diamond, P. H.*; Schmitz, L.*; McDonald, D. C.*; Estrada, T.*; G$"u$rcan, $"O$. D.*; Tynan, G. R.*

Physics of Plasmas, 20(6), p.062304_1 - 062304_9, 2013/06

 Times Cited Count:19 Percentile:64.53(Physics, Fluids & Plasmas)

Since ITER will operate close to threshold and with limited control, the H$$rightarrow$$L back transition is a topic important for machine operations as well as physics. Using a reduced mesoscale model, we investigate ELM-free H$$rightarrow$$L back transition dynamics in order to isolate transport physics effects. Model studies indicate that turbulence spreading is the key process which triggers the back transition. The transition involves a feedback loop linking turbulence and profiles. The I-phase appears during the back transition following a slow power ramp down, while fast ramp-downs reveal a single burst of zonal flow during the back transition. The I-phase nucleates at the pedestal shoulder, as this is the site of the residual turbulence in H-mode. Hysteresis in the profile gradient scale length is characterized by the Nusselt number. Relative hysteresis of temperature gradient vs density gradient is sensitive to the pedestal Prandtl number.

Journal Articles

1st Asia-Pacific Transport Working Group (APTWG) Meeting

Ida, Katsumi*; Dong, J. Q.*; Kikuchi, Mitsuru; Kwon, J. M.*; Diamond, P. H.*

Nuclear Fusion, 52(2), p.027001_1 - 027001_10, 2012/02

This conference report summarizes the contributions to, and discussions at, the 1st Asia-Pacific Transport Working Group Meeting held in Toki, Japan, on 14-17 June 2011. The topics of the meeting were organized under four main headings: momentum transport, non-locality in transport, edge turbulence and L to H transition and 3D effects on transport physics. The events which initiated this meeting are also described in this report.

Journal Articles

Experimental progress on zonal flow physics in toroidal plasmas

Fujisawa, Akihide*; Ido, Takeshi*; Shimizu, Akihiro*; Okamura, Shoichi*; Matsuoka, Keisuke*; Iguchi, Harukazu*; Hamada, Yasuji*; Nakano, Haruhisa*; Oshima, Shinsuke*; Ito, Kimitaka*; et al.

Nuclear Fusion, 47(10), p.S718 - S726, 2007/10

 Times Cited Count:100 Percentile:95.33(Physics, Fluids & Plasmas)

Present status of experiments on zonal flows is overviewed. Innovative use of modern diagnostics has revealed the existence of zonal flows, their spatio-temporal characteristics, their relationship with turbulence, and their effects on confinement. Particularly a number of observations have been accumulated on the oscillatory branch of the zonal flow, dubbed as geodesic acoustic modes suggesting necessity of theories to give their proper description. Several new methods have elucidated the zonal flow generation processes from the turbulence. Further investigation of relationship between the zonal flows and confinement is strongly encouraged as cross-device activity.

Journal Articles

Experimental progress on zonal flow physics in toroidal plasmas

Fujisawa, Akihide*; Ido, Takeshi*; Shimizu, Akihiro*; Okamura, Shoichi*; Matsuoka, Keisuke*; Hamada, Yasuji*; Hoshino, Katsumichi; Nagashima, Yoshihiko*; Shinohara, Koji; Nakano, Haruhisa*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 12 Pages, 2007/03

Present status of experiments on zonal flows is overviewed. Innovative use of traditional and modern diagnostics has revealed unambiguously the existense of the zonal flows, their spatio-temporal caracteristics, their relationship with turbulence, and their effects on confinement. Particularly, a number of observations have been accumulated on the oscillatory branch of zonal flows, dubbed geodesic acoustic modes, suggesting necessity of theories to give their proper description. Furthur investigation of relationship between zonal flows and confinement is strongly encouraged as cross-device activity.

Oral presentation

Physics of stimulated and spontaneous L-H transitions

Miki, Kazuhiro; Diamond, P. H.*; Hahn, S.-H.*; Xiao, W. W.*; G$"u$rcan, $"O$. D.*; Tynan, G. R.*

no journal, , 

A central issue in H-mode physics is to achieve control, not only understanding. Work in control has focused mainly on fueling by pellet injection at the near edge. We here introduce a developed one-dimensional mesoscale model, to report on the L-H transition stimulated by pellet injection. For highly heated plasmas, transition occurs spontaneously; when heat flux increases, a strong zonal flow is sufficiently excited, leading to I-phase oscillations or a single burst. When the zonal flow is excited, turbulence is reduced, allowing an ion pressure gradient to steepen. Then, mean flow shear increases to lock in the H-mode. On the other hand, studies reveal that L-H transition can be triggered by particle injection into a subcritical state. We also observe that zonal flows do not play a critical role in stimulated transitions.

Oral presentation

Spatio-temporal evolutions of L-H and H-L transitions in the one-dimensional model

Miki, Kazuhiro; Diamond, P. H.*; Schmitz, L.*; McDonald, D. C.*; Gurcan, O.*; Tynan, G. R.*

no journal, , 

Since ITER will operate close to threshold and with limited control, the H-L back transition is a topic important for machine operations as well as physics. Using a reduced mesoscale model, we investigate ELM-free H-L back transition dynamics. Model studies indicate that turbulence spreading is the key process which triggers the back transition. The transition involves a feedback loop linking turbulence and profiles. The I-phase appears during the back transition following a slow power ramp down, while fast ramp-down reveal a single burst of zonal flow during the back transition. The I-phase nucleates at the pedestal shoulder, as this is the site of the residual turbulence in H-mode. Hysteresis in profile gradient is characterized by the Nusselt number. Relative hysteresis of temperature gradient vs density gradient is sensitive to the pedestal Prandtl number. We expect the H-mode to be somewhat more resilient in density than in temperature.

Oral presentation

Progress of understanding negative triangular tokamak configuration

Kikuchi, Mitsuru; Fasoli, A.*; Takizuka, Tomonori*; Diamond, P.*; Medvedev, S.*; Duan, X.*; Zushi, Hideki*; Furukawa, Masaru*; Kishimoto, Yasuaki*; Wu, Y.*; et al.

no journal, , 

Power and particle control is challenging for standard D-shaped H-mode scenario in tokamak. Possibility of negative triangularity as innovative tokamak concept is discussed by Kikuchi et al. Experimental and numerical studies of negative triangular plasma at CRPP-EPFL success-fully demonstrated improved connement and the weakening of the SOL flow acceleration is implied for the negative triangularity. Recent studies on mechanism of type II and grassy ELM show importance of closure of second stability access to achieve small ELM regimes and also kinetic effects. Medvedev showed that closure of second stability also occurs for negative triangularity. But the MHD stability in negative triangularity is a bit more complicated so that closure of second stability does not imply easy access to small ELM regimes. We discuss critical elements behind.

11 (Records 1-11 displayed on this page)
  • 1