Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The Project for grouting development for the high level radioactive waste repository, 3; Durability test of coloidal silica grout

Sugiyama, Hirokazu*; Nobuto, Jun*; Fukuoka, Naomi; Shinkai, Fumiaki; Shimada, Shunsuke*; Koyama, Tadao*; Kijima, Masashi*; Terashima, Rei*

Doboku Gakkai Heisei-22-Nendo Zenkoku Taikai Dai-65-Kai Nenji Gakujutsu Koenkai Koen Gaiyoshu (DVD-ROM), p.87 - 88, 2010/09

no abstracts in English

Journal Articles

The Project for grouting development for high level radioactive waste repository, 4; Development of superfine spherical silica grout

Yamada, Tsutomu*; Sekine, Ichiro*; Sekiguchi, Takashi*; Ishida, Hideaki*; Kishi, Hirokazu; Fukuoka, Naomi

Doboku Gakkai Heisei-22-Nendo Zenkoku Taikai Dai-65-Kai Nenji Gakujutsu Koenkai Koen Gaiyoshu (DVD-ROM), p.89 - 90, 2010/09

no abstracts in English

JAEA Reports

Development of grout materials for a geological disposal system for high-level radioactive waste

Fukuoka, Naomi; Shinkai, Fumiaki; Miura, Norihiko*; Nobuto, Jun*; Yamada, Tsutomu*; Naito, Morimasa

JAEA-Data/Code 2010-005, 353 Pages, 2010/07

JAEA-Data-Code-2010-005-01.pdf:8.91MB
JAEA-Data-Code-2010-005-02.pdf:46.47MB

High-level radioactive waste management in Japan is based on the multi-barrier concept, composed of the engineered barrier system and the surrounding geological formations. Although cementitious materials are commonly used for rock support, lining, and grouting, their pH plume are considered to have an adverse effect on long-term safety of a geological disposal system. In addition, during the emplacement of waste package with buffer material, it is required to limit amount of groundwater inflow into a disposal pit or tunnel to a certain level by grouting because the bentonite clay buffer is easy to swell in time by contact with the groundwater. Therefore, it is necessary to develop new grout materials with penetrability for smaller fractures. This report shows the most appropriate composition of new grout materials to be suitable for the in-situ experiment based on the result of indoor test.

Journal Articles

Development of superfine spherical silica grout as an alternative grouting material for the geological disposal of long-lived radioactive waste

Naito, Morimasa; Kishi, Hirokazu; Fukuoka, Naomi; Yamada, Tsutomu*; Ishida, Hideaki*

Proceedings of 18th International Conference on Nuclear Engineering (ICONE-18) (CD-ROM), 7 Pages, 2010/05

As an alternative grouting material for the geological repository of long-lived radioactive waste, the "Superfine Spherical silica Grout" (SFSG) material is developed using a fine spherical silica and a fine calcium hydroxide. The developed SFSG material takes an advantage of its smaller particle size distribution (max. $$sim$$1 micron or less) than those of the cementitious materials, and also provides a low alkaline environment so as to reduce unfavorable effects on the long-term performance of geological disposal system. The SFSG is a mixture of the super fine silica powder, the superfine calcium hydroxide and additives such as superplasticizer. Some preliminary laboratory experiments were carried out to characterize its fundamental properties from the viewpoint of practical use for geological disposal, which is required to be equivalent with the conventional cementitious materials in terms of penetrability, strength, pH performance and workability.

4 (Records 1-4 displayed on this page)
  • 1